Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(C=\frac{1}{\left|x-2\right|+3}\)
\(C\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
Bài 2 :
a) \(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b) \(2\cdot3^{x-405}=3^{x-1}\)
\(2=3^{x-1}:3^{x-405}\)
\(2=3^{x-1-x+405}\)
\(2=3^{404}\)( vô lí )
=> x thuộc rỗng
c) \(\frac{1}{81}\cdot27^{2x}=\left(-9\right)^4\)
\(\frac{27^{2x}}{81}=9^4\)
\(\frac{\left(3^3\right)^{2x}}{3^4}=\left(3^2\right)^4\)
\(\frac{3^{6x}}{3^4}=3^8\)
\(3^{6x-4}=3^8\)
\(\Rightarrow6x-4=8\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
d) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-1=\left\{\pm1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\left\{\frac{1}{2};0\right\}\end{cases}}\)
a)\(\frac{X}{5}=\frac{5}{6}+\frac{-19}{30}\)
\(\frac{X}{5}=\frac{1}{5}\)
Vậy \(X=1\)
b)\(X-\frac{41}{5}=\frac{-2}{3}\)
\(X=\frac{-2}{3}+\frac{41}{5}\)
\(X=\frac{113}{15}\)
Vậy \(X=\frac{113}{15}\)
c)\(\frac{31}{5}-X=\frac{11}{3}+\frac{7}{10}\)
\(\frac{31}{5}-X=\frac{131}{30}\)
\(X=\frac{31}{5}-\frac{131}{30}\)
\(X=\frac{11}{6}\)
Vậy \(X=\frac{11}{6}\)
d)\(\frac{9}{X}=\frac{2}{5}+\frac{-7}{20}\)
\(\frac{9}{X}=\frac{1}{20}\)
\(X=9:\frac{1}{20}\)
\(X=180\)
Vậy \(X=180\)
Hc tốt
a.\(x^2+11x-12\)
<=>\(x^2-x+12x-12\)
<=> \(x\left(x-1\right)+12\left(x-1\right)\)
<=> \(\left(x-1\right)\left(x+12\right)\)
b. \(2x^2-7x+9\)
Bài này mik kh pk lm, kh cs số nào nhân lại bằng 18 và cộng lại bằng -7 cả
c. \(x^2-12x+20\)
<=> \(x^2-2x-10x+20\)
<=> \(x\left(x-2\right)-10\left(x-2\right)\)
<=> \(\left(x-2\right)\left(x-10\right)\)
d. \(4x^2-13x+3\)
<=> \(4x^2-12x-x+3\)
<=> \(4x\left(x-3\right)-\left(x-3\right)\)
<=> \(\left(x-3\right)\left(4x-1\right)\)
e. \(x^2-8x-20\)
<=> \(x^2+2x-10x-20\)
<=> \(x\left(x+2\right)-10\left(x+2\right)\)
<=> \(\left(x+2\right)\left(x-10\right)\)
Bài 1:
a)Ta thấy:\(-\left|x+\frac{4}{7}\right|\le0\)
\(\Rightarrow-\left|x+\frac{4}{7}\right|+\frac{12}{19}\le0+\frac{12}{19}=\frac{12}{19}\)
\(\Rightarrow A\le\frac{12}{19}\)
Dấu "=" xảy ra <=>x=-4/7
Vậy...
b)Ta thấy:\(-\left|x-5,3\right|\le0\)
\(\Rightarrow19,18-\left|x-5,3\right|\le19,18-0=19,18\)
\(\Rightarrow B\le19,18\)
Dấu "=" xảy ra <=>x=5,3
Vậy...
Bài 2:
a)Áp dụng BĐT |a|+|b|>=|a+b| ta có:
\(\left|x-20\right|+\left|x-2016\right|\ge\left|x-20+2016-x\right|=1996\)
\(\Rightarrow A\ge1996\)
Dấu "=" xảy ra <=>x=20 hoặc 2016
b)bạn xét từng trường hợp rồi tìm ra Min xét dấu "=" là ok
\(x:\dfrac{2}{5}+\left(x-\dfrac{3}{2}\right)=\dfrac{9}{20}\)
\(\Leftrightarrow x.\dfrac{5}{2}+\left(x-\dfrac{3}{2}\right)=\dfrac{9}{20}\)
\(\Leftrightarrow\dfrac{5x}{2}+x-\dfrac{3}{2}=\dfrac{9}{20}\)
\(\Leftrightarrow\dfrac{7x}{2}=\dfrac{39}{20}\)
\(\Leftrightarrow7x.20=2.39\)
\(\Leftrightarrow x=\dfrac{39}{70}\)