\(\sqrt{x^2+x+1}=x+2\)

Mọi ng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(B=\frac{1}{-\left(x-2\sqrt{x}+1\right)-2}=\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\)

\(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\)

\(\Leftrightarrow-\left(\sqrt{x}-1\right)^2-2\le-2\)

\(\Leftrightarrow\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\ge\frac{1}{-2}=\frac{-1}{2}\)

\("="\Leftrightarrow x=1\)

Vậy biểu thức B đạt giá trị nhỏ nhất là -1/2 khi x=1

28 tháng 7 2019

\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4}{x-1}\)

b) \(\frac{4}{x-1}=7\)

\(\Leftrightarrow4=7.\left(x-1\right)\)

\(\Leftrightarrow\frac{4}{7}=x-1\)

\(\Leftrightarrow\frac{4}{7}+1=x\)

\(\Leftrightarrow\frac{11}{7}=x\)

\(\Rightarrow x=\frac{11}{7}\)

30 tháng 6 2019

      ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)

Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)

          

4 tháng 8 2015

a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)

         \(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)

b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)

Vậy Min P =-1/4

c, Chắc bằng nhau vì cùng dương mà 

24 tháng 9 2017

Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0

b) Đkxd X >=0

Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\)

Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0

Hay min p =0

Dấu = xảy ra <=> x=0

Vậy để minP=0<=>x=0

C)Dkxd x>1

CóP>=0(chứng minh trên )

=>|P|=P

23 tháng 8 2015

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right).\left(\frac{x+1}{x+1+\sqrt{x}}\right)\)

\(=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{x+1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}.\frac{1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)