Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
Câu a với câu b giống nhau nha bạn
ĐKXĐ: \(\hept{\begin{cases}2x-3\ge0\\x-1>0\end{cases}\Rightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x>1\end{cases}\Rightarrow}x\ge\frac{3}{2}}\)
Ta có: \(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\Rightarrow2x-3=4\left(x-1\right)\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\left(l\right)\)
Vậy \(x\in\phi\)
c/ \(\sqrt{3}x^2-\sqrt{48}=0\Rightarrow x^2=\frac{\sqrt{48}}{\sqrt{3}}=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
d/ \(\sqrt{x-2}=2x-5\) Điều kiện nghiệm: \(x\ge\frac{5}{2}\)
\(\Rightarrow x-2=4x^2-20x+25\)
\(\Rightarrow4x^2-21x+27=0\)
\(\Rightarrow\left(x-3\right)\left(4x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{9}{4}\left(l\right)\end{cases}}\)
Vậy x = 3
a) \(pt\Leftrightarrow\frac{2x-3}{x-1}=4\)
Bài giải chỉ cần như vậy vì khi \(\frac{2x-3}{x-1}=4\)thì hiển nhiên \(\frac{2x-3}{x-1}\ge0\)nên ko cần điều kiện xác định
(Giải ĐKXĐ còn khó hơn giải bài như trên)
b) \(pt\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x-1>0\\\frac{2x-3}{x-1}=4\end{cases}}\)
c) \(pt\Leftrightarrow x^2=\sqrt{\frac{48}{3}}=4\Leftrightarrow x=\pm2\)
d)\(pt\Leftrightarrow\hept{\begin{cases}2x-5\ge0\\x-2=\left(2x-5\right)^2\end{cases}}\)
Khi \(x-2=\left(2x-5\right)^2\) thì hiển nhiên \(x-2\ge0\) nên ko cần đặt điều kiện \(x-2\ge0\)
Điều kiện có nghĩa
a/ \(\hept{\begin{cases}x+2\ge0\\x-5\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ne5\end{cases}}\)
b/ \(\hept{\begin{cases}2x-1\ge0\\x+3\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne-3\end{cases}}\)
c/ \(\left(x-3\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge3\end{cases}}\)
d/ \(\hept{\begin{cases}2x-1\ge0\\-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le0\end{cases}}\)
Không tồn tại x để nó có nghĩa.
e/ \(\hept{\begin{cases}-3x\ge0\\x+2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le0\\x>-2\end{cases}}\)
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
Lời giải :
\(\sqrt{x-1}=2-2x\)
ĐKXĐ: \(\hept{\begin{cases}2-2x\ge0\\x-1\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge1\end{cases}}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)