Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
\(\Leftrightarrow x+3=4\)
\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)
\(\Leftrightarrow2\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )
Vậy.......
Câu a : ĐK : \(x\ge\dfrac{3}{4}\)
\(\sqrt{3x+1}=\sqrt{4x-3}\)
\(\Leftrightarrow3x+1=4x-3\)
\(\Leftrightarrow-x=-4\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy \(S=\left\{4\right\}\)
Câu b : ĐK : \(x\ge-2\)
\(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\)
\(\Leftrightarrow x=7\left(TM\right)\)
Vậy \(S=\left\{7\right\}\)
a) \(\sqrt{2x-3}=7\) ( ĐKXĐ : \(x\ge\dfrac{3}{2}\) )
\(\Leftrightarrow2x-3=49\)
\(\Leftrightarrow2x=52\)
\(\Leftrightarrow x=26\) ( thỏa mãn điều kiện xác định )
Vậy phương trình có nghiệm x = 26 .
b) \(\sqrt{x^2-4x+4}=\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow|x-2|-\sqrt{5}+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2-\sqrt{5}+1=0\\2-x-\sqrt{5}+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1-\sqrt{5}\\x=\sqrt{5}-3\end{matrix}\right.\)
Vậy ...............
P/s : Mình không chắc bài này có đúng không nữa .
2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)
\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)
\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)
\(-\sqrt{x+2}=-9\)
\(x+2=81\)
\(\Rightarrow x=79\)
3) \(\sqrt{x^2-4x+4}=7x-1\)
\(\sqrt{x^2-2.x.2+2^2}=7x-1\)
\(\sqrt{\left(x-2\right)^2}=7x-1\)
\(x-2=7x-1\)
\(-2=7x-1-x\)
\(-2+1=7x-x\)
\(-1=6x\)
\(-\frac{1}{6}=x\)
\(\Rightarrow x=-\frac{1}{6}\)
ĐK: \(x\ge -2\)
\(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(pt\Leftrightarrow\left(\sqrt{9x+18}-9\right)-\left(5\sqrt{x+2}-15\right)+\left(\dfrac{4}{5}\sqrt{25x+50}-12\right)=0\)
\(\Leftrightarrow\dfrac{9x+18-81}{\sqrt{9x+18}+9}-\dfrac{25\left(x+2\right)-225}{5\sqrt{x+2}+15}+\dfrac{\dfrac{16}{25}\left(25x+50\right)-144}{\dfrac{4}{5}\sqrt{25x+50}+12}=0\)
\(\Leftrightarrow\dfrac{9x-63}{\sqrt{9x+18}+9}-\dfrac{25x-175}{5\sqrt{x+2}+15}+\dfrac{16x-112}{\dfrac{4}{5}\sqrt{25x+50}+12}=0\)
\(\Leftrightarrow\dfrac{9\left(x-7\right)}{\sqrt{9x+18}+9}-\dfrac{25\left(x-7\right)}{5\sqrt{x+2}+15}+\dfrac{16\left(x-7\right)}{\dfrac{4}{5}\sqrt{25x+50}+12}=0\)
\(\Leftrightarrow\left(x-7\right)\left(\dfrac{9}{\sqrt{9x+18}+9}-\dfrac{25}{5\sqrt{x+2}+15}+\dfrac{16}{\dfrac{4}{5}\sqrt{25x+50}+12}\right)=0\)
Dễ thấy: \(\dfrac{9}{\sqrt{9x+18}+9}-\dfrac{25}{5\sqrt{x+2}+15}+\dfrac{16}{\dfrac{4}{5}\sqrt{25x+50}+12}>0\forall x\ge-2\)
\(\Rightarrow x-7=0\Rightarrow x=7\)
a.
\(DK:49-28x-4x^2\ge0\)
PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)
\(\Leftrightarrow49-28x-4x^2=25\)
\(\Leftrightarrow4x^2+28x-24=0\)
\(\Leftrightarrow x^2+7x-6=0\)
Ta co:
\(\Delta=7^2-4.1.\left(-6\right)=73>0\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)
Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
\(< =>\sqrt[3]{x+5}=-2\)
<=> \(\left(\sqrt[3]{x+5}\right)^3=-8\)
<=> \(x+5=-8\)
<=> x=-13
ĐK: \(x+2\ge0\Leftrightarrow x\ge-2\)
\(3\sqrt{x+2}-\sqrt{x+2}-4\sqrt{x+2}=-10\)
\(-2\sqrt{x+2}=-10\)
\(\sqrt{x+2}=5\)
\(\left\{{}\begin{matrix}5\ge0\left(ld\right)\\x+2=25\end{matrix}\right.\)\(\Leftrightarrow x=23\left(n\right)\)
https://hoc24.vn/cau-hoi/.2599809129005