Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
ĐKXĐ của cả A và B : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(B=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{x-\sqrt{x}+5\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
\(M=\frac{B}{A}=\frac{\frac{\sqrt{x}-1}{\sqrt{x}-5}}{\frac{\sqrt{x}+2}{\sqrt{x}-5}}=\frac{\sqrt{x}-1}{\sqrt{x}-5}\times\frac{\sqrt{x}-5}{\sqrt{x}+2}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
ĐKXĐ của M : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(M\times\left(\sqrt{x}+2\right)\ge3x-3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\times\left(\sqrt{x}+2\right)\ge3x-3\)( ĐK : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\))
\(\Leftrightarrow\sqrt{x}-1\ge3x-3\)
\(\Leftrightarrow3x-\sqrt{x}-3+1\ge0\)
\(\Leftrightarrow3x-\sqrt{x}-2\ge0\)
\(\Leftrightarrow3x-3\sqrt{x}+2\sqrt{x}-2\ge0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}+2\right)\ge0\)
Dễ dàng nhận thấy \(3\sqrt{x}+2\ge2>0\forall x\ge0\)
\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Leftrightarrow x\ge1\)
Kết hợp với điều kiện => Với 0 ≤ x ≤ 1 thì thỏa mãn đề bài
a)\(4\sqrt{x}-5\sqrt{4x}-\sqrt{25x}-3\sqrt{x}-5\)
=\(4\sqrt{x}-10\sqrt{x}-5\sqrt{x}-3\sqrt{x}-5\)
=\(-14\sqrt{x}-5\)
b)\(\sqrt{16x}-5\left(\sqrt{x}-2\right)\sqrt{79x}-5\)
=\(4\sqrt{x}-\left(5\sqrt{x}-10\right)\sqrt{79x}-5\)
=\(4\sqrt{x}-\left(5\sqrt{79}x-10\sqrt{79}x\right)-5\)
=\(4\sqrt{x}+5\sqrt{79}x-5\)
a) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
b) \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
\(=2\)
c) \(4x-4x-\sqrt{x^2-4x+4}\)
\(=-\sqrt{\left(x-2\right)^2}\)
\(=-\left|x-2\right|\)
\(=-x+2\)
\(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|=\sqrt{5}+1-\sqrt{5}+1=2\)
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
a) ĐKXĐ: \(2x^2-9\ge0\Leftrightarrow2x^2\ge9\Leftrightarrow x^2\ge\frac{9}{2}\Leftrightarrow\left[{}\begin{matrix}x\ge\frac{3}{\sqrt{2}}\\x\le\frac{-3}{\sqrt{2}}\end{matrix}\right.\)
Ta có: \(\sqrt{2x^2-9}=x\)
\(\Leftrightarrow2x^2-9=x^2\)
\(\Leftrightarrow2x^2-9-x^2=0\)
\(\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)
Vậy: S={3;-3}
b) ĐKXĐ: \(x\in R\)
Ta có: \(\sqrt{x^2-8x+16}=4\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4\)
\(\Leftrightarrow\left|x-4\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=-4\\x-4=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=8\left(nhận\right)\end{matrix}\right.\)
Vậy: S={0;8}
c) ĐKXĐ: \(x\ge0\)
Ta có: \(\sqrt{4x}=\sqrt{5}\)
\(\Leftrightarrow4x=5\)
hay \(x=\frac{5}{4}\)(nhận)
Vậy: \(S=\left\{\frac{5}{4}\right\}\)
a/ \(\sqrt{2x^2-9}=x\)
\(\Leftrightarrow2x^2-9=x^2\)
\(\Leftrightarrow2x^2-x^2-9=0\)
\(\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy...
b/ \(\sqrt{x^2-8x+16}=4\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4\)
\(\Leftrightarrow\left(x-4\right)^2=4\)
\(\Leftrightarrow\left(x-4\right)^2-4=0\)
\(\Leftrightarrow\left(x-4-2\right)\left(x-4+2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-6=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
Vậy....
c/ ĐK : \(x\ge0\)
Ta có :
\(\sqrt{4x}=\sqrt{5x}\)
\(\Leftrightarrow4x=5x\)
\(\Leftrightarrow5x-4x=0\)
\(\Leftrightarrow x=0\)
Vậy....
\(\sqrt{4x^2}=\sqrt{x+5}\)
\(\Leftrightarrow\hept{\begin{cases}x+5\ge0\\4x^2=x+5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-5\\4x^2-x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-5\\\left(x+1\right)\left(4x-5\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-5\\x_1=-1\left(tm\right);x_2=\frac{5}{4}\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của pt là S = { -1 ; 5/4 }
\(\sqrt{4x^2}=\sqrt{x+5}\)
\(\Leftrightarrow4x^2=x+5\)
\(\Leftrightarrow4x^2-x-5=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{4}\end{cases}}\)