\(\left(\frac{1}{25x27}+\frac{1}{27x29}+\frac{1}{29x31}+...+\frac{1}{73x75}\right)x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

\(\left(\frac{1}{25x27}+\frac{1}{27x29}+\frac{1}{29x31}+....+\frac{1}{73x75}\right)x\frac{3}{10}=x\)

\(< =>\frac{1}{2}x\left(\frac{2}{25x27}+\frac{2}{27x29}+\frac{2}{29x31}+....+\frac{2}{73x75}\right)x\frac{3}{10}=x\)

\(< =>\frac{1}{2}x\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+....+\frac{1}{73}-\frac{1}{75}\right)x\frac{3}{10}=x\)

\(< =>\frac{1}{2}x\left(\frac{1}{25}-\frac{1}{75}\right)x\frac{3}{10}=x< =>\frac{1}{2}x\frac{2}{25}x\frac{3}{10}=x< =>x=\frac{3}{250}\)

3 tháng 7 2018

Câu b:

\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)

\(\frac{63}{20}+\frac{3}{5}\)

\(\frac{15}{4}\)

7 tháng 7 2018

\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)

\(\frac{25}{8}:\frac{5}{6}\)

\(\frac{25}{8}.\frac{6}{5}\)

\(\frac{30}{8}\)

19 tháng 7 2017

\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{10}\right)=\frac{x}{2010}\)

\(\Leftrightarrow\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{9}{10}=\frac{x}{2010}\)

\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot9}{2\cdot3\cdot4\cdot....\cdot10}=\frac{x}{2010}\)

\(\Leftrightarrow\frac{1}{10}=\frac{x}{2010}\)

\(\Leftrightarrow x=\frac{2010}{10}=201\)

19 tháng 7 2017

Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{10}\right)=\frac{x}{2010}\)

=> \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{9}{10}=\frac{x}{2010}\)

\(\Rightarrow\frac{1.2.3......9}{2.3.4.....10}=\frac{x}{2010}\)

\(\Rightarrow\frac{1}{10}=\frac{x}{2010}\)

\(\Rightarrow x=\frac{2010}{10}=201\)

\(=\frac{1}{10}\)

16 tháng 8 2017

Ta có:

\(A=\left(x-\frac{1}{2}\right).\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{10}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\frac{9}{10}=\frac{1}{3}\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}.\frac{10}{9}\Leftrightarrow x=\frac{47}{54}\)

\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}=\frac{1}{10.x}\)

\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)=\frac{1}{10}-\frac{1}{x}\)

\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\)

\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\Leftrightarrow B=\frac{1}{5}.\frac{100}{101}=\frac{1}{10}-\frac{1}{x}\)

\(\Leftrightarrow B=\frac{1}{x}=\frac{1}{10}-\frac{20}{101}=-\frac{99}{1010}\Leftrightarrow x=-\frac{1010}{99}\)

16 tháng 8 2017

c) Sai đề nhé bạn vì không có kết quả nên không tìm được x.

d) \(\left(x-5\right).\left(10-9\frac{40}{41}\right):\left(1-\frac{81}{82}\right):\left(1-\frac{204}{205}\right)=2050\)

\(\Rightarrow\left(x-5\right).\frac{1}{41}.82.205=2050\)

\(\Rightarrow\left(x-5\right).2.205=2050\Leftrightarrow x-5=2050:410=5\Leftrightarrow x=10\)

= 29 nhé 

Mình ko chắc nhé , nên mình sai đừng k mình sai !

18 tháng 7 2018

\(\frac{1}{3×4}+\frac{1}{4×5}+...+\frac{1}{x+\left(x+1\right)}=\frac{3}{10}\)

\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)

\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)

\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}\)

\(\frac{1}{x+1}=\frac{10}{30}-\frac{9}{30}\)

\(\frac{1}{x+1}=\frac{1}{30}\)

\(\Rightarrow x+1=30\)

\(x=30-1\)

\(x=29\)

Ở đây đề bị lỗi là : 1/x+(x+1) đáng lẽ phải là 1/x.(x+1) thì mới đúng .

25 tháng 6 2017

Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)

\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)

\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)

\(\frac{1}{x}=\frac{1}{2}\)

=> x = 2

25 tháng 6 2017

a) \(\frac{x\div3-16}{2}+21=38\)

\(\frac{x\div3-16}{2}=38+21\)

\(\frac{x\div3-16}{2}=59\)

\(x\div3-16=59.2\)

\(x\div3-16=118\)

\(x\div3=118+16\)

\(x\div3=134\)

\(x=134.3\)

\(x=402\)

b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)

\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)

\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{2}\)

Vậy x = ....

23 tháng 1 2016

Chỉ biết \(x\) = \(\frac{109}{6075}\) thôi

Cái này lớp 6 : 

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{4026}=\frac{1}{2013}\)

\(\Leftrightarrow x+1=2013\)

=> x = 2012

1 tháng 6 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{x+1}=1-\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{x+1}=\frac{2}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2013-1\)

\(\Rightarrow x=2012\)

Vậy \(x=2012\)

~ Ủng hộ nhé