K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

=>|x-3|=5+7=12

=>x-3=12 hoặc x-3=-12

=>x=15 hoặc x=-9

vậy x E {-9;15}

tick nhé

25 tháng 12 2015

Ix-3I=I5I+I-7I

Ix-3I=12

nên Ix-3I=-12 hoăc 12

vậy x= -9hay15

tick nha

20 tháng 12 2015

xong từ mấy đời rồiNguyễn Vũ Dũng ak

9 tháng 2 2018

a, | x + y - 8 | + | x - y - 18 | = 0

 Suy ra : | x + y - 8  | = 0 hoặc | x - y - 18 | = 0

      Nếu | x + y - 8 | = 0                                              Nếu | x - y - 18 | = 0

            => x + y - 8 = 0                                                 =>   x - y - 18 = 0

                 x + y = 8 ( 1 )                                                      x - y = 18       ( 2 )

                             Từ ( 1 ) và ( 2 ) suy ra :  x = 13 và y = -5

b, | x + y - 7 | + | xy - 10 | \(\le\)0

  Vì | x + y - 7 | \(\ge\)0; | xy - 10 | \(\ge\)0 nên | x + y - 7 | + | xy - 10 | \(\le\)0

           Suy ra : | x + y - 7 | + | xy - 10 | \(\le\)0 <=> x + y - 7 | = 0 và | xy - 10 | = 0

   | x + y - 7 | = 0                                     | xy - 10 | = 0

   => x + y - 7 = 0                                 => xy - 10 = 0

        x + y  = 7          ( 1)                           xy = 10          ( 2 )

 Từ ( 1 ) và ( 2 ) suy ra : x = 5  và y = 2

c, | x - y - 5 | + 2017. | y - 3 | = 0

Vì | x - y - 5 | \(\ge\)0 ; 2017. | y - 3 | \(\ge\)0 nên | x - y - 5 | + 2017. | y - 3 | = 0

  Mà | x - y - 5 | + 2017. | y - 3 | = 0 <=> | x - y - 5 | = 0 ; | y - 3 | = 0

    | x - y - 5 | = 0                                     | y - 3 | = 0

    => x - y - 5 = 0                                 => y - 3 = 0

         x - y = 5 ( 1 )                                   y = 3 ( 2 )

          Từ ( 1 ) và ( 2 ) suy ra : x = 8 và y = 3

        

         

              

9 tháng 2 2018

a) Do \(\left|x+y-8\right|\ge0;\left|x-y-18\right|\ge0\forall x,y\)

nên \(\left|x+y-8\right|+\left|x-y-18\right|=0\Leftrightarrow\hept{\begin{cases}\left|x+y-8\right|=0\\\left|x-y-18\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=8\\x-y=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=13\\y=-5\end{cases}}\)

b) Do \(\left|x+y-7\right|\ge0;\left|xy-10\right|\ge0\forall x,y\)

nên \(\left|x+y-7\right|+\left|xy-10\right|\le0\Leftrightarrow\hept{\begin{cases}\left|x+y-7\right|=0\\\left|xy-10\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=7\\xy=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=5\\x=5;y=2\end{cases}}\)

c) Do \(\left|x-y-5\right|\ge0;\left|y-3\right|\ge0\forall x,y\)

nên \(\left|x-y-5\right|+2017.\left|y-3\right|=0\Leftrightarrow\hept{\begin{cases}\left|x-y-5\right|=0\\\left|y-3\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-y=5\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)

7 tháng 2 2018

a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)

TH1: x - 1 = 3

         x      = 4

TH2: x - 1 = - 3

        x       = - 2 

b) Tương tự câu a.

c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)

\(\left|\left|2x-3\right|-x+1\right|=34\)

TH1: \(\left|2x-3\right|-x+1=34\)

\(\left|2x-3\right|-x=33\)

Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\)  (tm)

Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)

TH2: \(\left|2x-3\right|-x+1=-34\)

\(\left|2x-3\right|-x=-35\)

Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\)  (l)

Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)

d) Tương tự câu c.

11 tháng 2 2017

a ) 2|x - 3| - 5 = 3 <=> 2|x - 3| = 8 <=> |x - 3| = 4 => x - 3 = ± 4

TH1 : x - 3 = 4 => x = 7

TH2 : x - 3 = - 4 => x = - 1

Vậy x = { - 1; 7 }

b ) 2|2x + 3| + |2x + 3| = 6 <=> 3|2x + 3| = 6 => |2x + 3| = 2 => 2x + 3 = ± 2

=> x = { - 5/2 ; - 1/2 }

c ) 3|x + 1|2 + |x + 1|2 = 16

4|x + 1|2 = 16

=> |x + 1|2 = 4 = 22 ( ko xét TH |x + 1| = - 2 vì |x + 1| ≥ 0 )

=> |x + 1| = 2 => x + 1 = ± 2 => x = { - 3; 1 }