Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\)) \(32^{-x}.16^x=1024\)
\(\left(2\right)^{-5x}.2^{4x}=2^{10}\)
\(\Leftrightarrow2^{4x-5x}=2^{10}\)
\(\Leftrightarrow2^{-x}=2^{10}\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
\(g\)) \(3^{x-1}.5+3^{x-1}=162\)
\(3^{x-1}.\left(5+1\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)
\(3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
\(h\)) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=\left(1,-1\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=-1\\2x-1=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=0\\2x=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=0\\x=1\end{cases}}\)
\(i\)) \(5^x+5^{x+2}=650\)
\(5^x.\left(1+5^2\right)=650\)
\(5^x.26=650\)
\(5^x=650:26\)
\(5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
a./ \(\Leftrightarrow x^{10}=1\Leftrightarrow x=\pm1\)
b./ \(\Leftrightarrow x^{10}-x=0\Leftrightarrow x\left(x^9-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^9=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c./ \(\Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\Leftrightarrow\left(2x-15\right)^3\left(\left(2x-15\right)^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
- 2x - 15 = 0 \(\Leftrightarrow x=\frac{15}{2}\)
- 2x - 15 = 1 \(\Leftrightarrow x=\frac{16}{2}=8\)
- 2x - 15 = -1 \(\Leftrightarrow x=\frac{14}{2}=7\)
Ta có 2x + 1 . 3y = 10x
=> 2x.3y.2 = 10x
=> 3y.2 = 5x
=> 3y.2 = (...5)
=> 3y = (...5) : 2
Vì 5y tận cùng là 5
=> 5y không chia hết cho 2
=> Không tồn tại x;y \(\inℕ\)thỏa mãn
=> \(x;y\in\varnothing\)
b) 10x : 5y = 20y
=> 10x = 4y
=> x = y = 0
c) (2x - 15)5 = (2x - 15)3
(2x - 15)5 - (2x - 15)3 = 0
=> (2x - 15)3[(2x - 15)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\Rightarrow2x-15\in\left\{0;1;-1\right\}\)
=> \(x\in\left\{7,5;8;7\right\}\)
Vì x là số tự nhiên => \(x\in\left\{7;8\right\}\)
Bài 5 :
Ta có : \(x+3⋮x+2\)
\(\Leftrightarrow x+2+1⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy ...
Bài 6 :
Ta có : \(2x+7⋮x+1\)
\(\Leftrightarrow2\left(x+1\right)+5⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-6;4\right\}\)
Vậy ...
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
\(a,2x-138=2^3:\left(-3\right)^2\)
\(\Rightarrow2x-138=8:9\)
\(\Rightarrow2x=\frac{8}{9}+138\)
\(\Rightarrow2x=\frac{1250}{9}\)
\(\Rightarrow x=\frac{626}{9}\)
\(10+2x=\left(-4\right)^5:\left(-4\right)^3\)
\(10+2x=-1024:\left(-64\right)\)
\(10+2x=16\)
\(2x=16-10\)
\(2x=6\)
\(x=6:2=3\)
a) x = 8
Vì khi cơ số là 0 thì có mũ mấy lên bao nhiêu cũng = 0
=>( 2.8-16)^8-(2.8-16)^3=(16-16)^8-(16-16)^3=0^8-0^3=0-0=0
b) x = 2
Vì khi cơ số =1 thì mũ lên bao nhiêu cũng =1
Mỏi tay quá , chắc đến đây đã hiểu rồi tự làm nha ! Nhớ ks nhé !
\(\left(2x+1\right).y=5\)
\(\Rightarrow2x+1;y\inƯ\left(5\right)=\left\{1;5\right\}\)
\(TH1:\hept{\begin{cases}2x+1=1\\y=5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x+1=5\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy....................
a) \(\left(2x+1\right)^3=125\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
b) \(1999^{2x-6}=1\)
\(\Rightarrow1999^{2x-1}=1999^0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
c) \(x^{2002}=x\)
\(\Rightarrow x^{2002}-x=0\)
\(\Rightarrow x.\left(x^{2001}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^{2001}-1=0\)
+) \(x=0\)
+) \(x^{2001}-1=0\Rightarrow x^{2001}=1\Rightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)
d) \(\left(x-1\right)^2=9\)
\(\Rightarrow x-1=\pm3\)
+) \(x-1=3\Rightarrow x=4\)
+) \(x-1=-3\Rightarrow x=-2\)
Vậy \(x\in\left\{4;-2\right\}\)
e) \(\left(2x-3\right)^2=81\)
\(\Rightarrow2x-3=\pm9\)
+) \(2x-3=9\Rightarrow2x=12\Rightarrow x=6\)
+) \(2x-3=-9\Rightarrow2x=-6\Rightarrow x=-3\)
Vậy \(x\in\left\{6;-3\right\}\)
Các phần khác làm tương tự
1 + 3 + 5 + ...... + ( 2x - 1 ) = 225
1 + 3 + 5 + ........ + 2x = 225 + 1
1 + 3 + 5 + ......... + 2x = 226
1 + 3 + 5 + ......... + x = 226 : 2
1 + 3 + 5 + ......... + x =113
Từ đây dễ rồi tự làm nhé
Thấy: Dãy số : 1, 3, 5, 7, ... , (2x-1) là dãy số cách đều, có x số hạng, khoảng cách bằng 2 Tổng các số hạng Sx = 225 . Áp dụng công thức tính tổng các số hạng, ta có : \(S=\frac{\left[1+\left(2x-1\right)\right].x}{2}=225\Leftrightarrow x^2=225\Leftrightarrow x=15.\)