Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5.2^{x+1}.2^{-2}-2^x=384\)
\(\Leftrightarrow2^x.2.\frac{5}{4}-2^x=384\)
\(\Leftrightarrow2^x.\left(\frac{5}{2}-1\right)=384\)
\(\Leftrightarrow2^x.\frac{3}{2}=384\)
\(\Leftrightarrow2^x=256\)
\(\Leftrightarrow2^x=2^8\)
\(\Leftrightarrow x=8\)
c) \(\left(x+1\right)^{x+1}=\left(x+1\right)^{x+3}\)
\(\Leftrightarrow\left(x+1\right)^{x+3}-\left(x+1\right)^{x+1}=0\)
\(\Leftrightarrow\left(x+1\right)^{x+1}\left[\left(x+1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^{x+1}=0\\\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x\in\left\{0;-2\right\}\end{cases}}}\)
Vậy \(x\in\left\{0;-1;-2\right\}\)
\(a,\frac{x}{5}=\frac{x^2}{25};\frac{y}{4}=\frac{y^2}{16}\)
Áp dụng tính chất của dãy ts bằng nhau
\(...=\frac{x^2-y^2}{25-16}=\frac{81}{9}=9\)
\(\Rightarrow\hept{\begin{cases}x^2=...\\y^2=...\end{cases}}\)( tự tính, mỗi cái 2 th, có 4 trường hợp )
b)
27^x : 9^x = 9^27 : 81
3^3x : 3^2x = 9^27 : 9^2
3^3x-2x = 3^75
3^x = 3^75
=> x = 75
thanks
Ta có :
\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{3}{75}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{9}{225}\)
\(\Leftrightarrow\)\(\left(xyz\right)^2=\left(\frac{3}{15}\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}xyz=\frac{3}{15}\\xyz=\frac{-3}{15}\end{cases}}\)
* Nếu \(xyz=\frac{3}{15}\)
\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\\y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\\z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\end{cases}}\)
Vậy \(x=\frac{-3}{2}\)\(;\)\(y=-2\) và \(z=\frac{9}{5}\)
Chúc bạn học tốt ~
Bạn êi tại olm bị lỗi chỗ \(\hept{\begin{cases}\\\\\end{cases}}\) nên mình trình bày lại nhá bạn
\(x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\)
\(y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\)
\(z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\)
Vậy ...
Chúc bạn học tốt ~
b) Vì \(VT=25-y^2\le25\) nên \(VP=8\left(x-2012\right)^2\le25\Rightarrow\left(x-2012\right)^2\le\frac{25}{8}\)
Mà \(x\in Z\Rightarrow\left(x-2012\right)^2\in Z\) Hay \(\orbr{\begin{cases}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{cases}}\)
Xét \(\left(x-2012\right)^2=0\Rightarrow x=2012\)
\(\Rightarrow25-y^2=0\Rightarrow\orbr{\begin{cases}y=-5\\y=5\end{cases}}\)(TM)
Xét \(\left(x-2012\right)^2=1\) thay vào ta được \(25-y^2=8\Rightarrow y^2=17\)(loại)
Vậy \(\left(x;y\right)=\left\{\left(2012;-5\right);\left(2012;5\right)\right\}\)
Vì x,y,z khác 0 nên ta áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\)
Đặt \(x=y=z=a\)
\(A=\frac{2013a^2+a^2+a^2}{a^2+2013a^2+a^2}=\frac{2015a^2}{2015a^2}=1\)