Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}-1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)ư
=\(\dfrac{x+2\sqrt{x}-7-\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{x +2\sqrt{x}-7-x+\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{-4}\)
=\(\dfrac{-4\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{-4\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)
b)ta có : \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+2}{\sqrt{x}-3}=1+\dfrac{2}{\sqrt{x}-3}\)
để P nguyên thì \(\sqrt{x}-3\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-3\inƯ\left(\pm1,\pm2\right)\)
\(\Rightarrow\sqrt{x}-3=1\Leftrightarrow x=16\left(TM\right)\)
\(\sqrt{x}-3=-1\Leftrightarrow x=4\left(KTM\right)\)
\(\sqrt{x}-3=2\Leftrightarrow x=25\left(TM\right)\)
\(\sqrt{x}-3=-2\Leftrightarrow x=1\left(KTM\right)\)
vậy x\(\in\left\{16,25\right\}\)
a) P = \(\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
= \(\left(\dfrac{-\sqrt{x}+\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\) = \(\dfrac{1}{\sqrt{x}+1}.\dfrac{\sqrt{x}-2}{1}\) = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
a, Mk làm hơi tắt chút bạn thông cảm nha . mk vội ý mà
\(A=\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right).\left(x-3\sqrt{x}+2\right)\)
\(A=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Câu c : \(A\in Z\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{1}{\sqrt{x}}\in Z\)
Để : \(1-\dfrac{1}{\sqrt{x}}\in Z\) thì \(\sqrt{x}\inƯ\left(1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=1\)
a/ \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)
\(=\frac{x-2}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(=\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}\)
b/ \(\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}=\frac{4+2\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}-4}{4+2\sqrt{3}+2\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{4+2\sqrt{3}+\sqrt{3}+1-4}{4+2\sqrt{3}+2\sqrt{3}+2}=\frac{1+3\sqrt{3}}{6+4\sqrt{3}}\)
a: \(B-2=\dfrac{4\sqrt{a}-4a-1}{2a+1}=\dfrac{-\left(2\sqrt{a}-1\right)^2}{2a+1}< 0\)
=>B<2
b: Để 1/D là số nguyên thì \(\sqrt{x}+2⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1+3⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1\in\left\{1;-1;3\right\}\)
hay \(x\in\left\{4;0;16\right\}\)
1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)
không thể cm được đâu bn --> xem lại đề
2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x=1\) vậy \(x=1\)
3) +) tương tự 2)
4) a) +) điều kiện xác định : \(x>0;x\ne4\)
ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)
c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)
tương tự 2 )
\(\)
Để \(A\in Z\) thì \(\sqrt{x}+3\) phải chia hết cho \(\sqrt{x}-2\).
\(\Rightarrow\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)⋮\left(\sqrt{x}-2\right)\)
\(\Rightarrow5⋮\left(\sqrt{x}-2\right)\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\sqrt{x}=\left\{3;7;1;-3\right\}\)
\(\Rightarrow x=\left\{9;49;1\right\}\)