Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề suy ra
\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
=> \(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)
=>x+1=30
=>x=29
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
\(A=\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
( gạch bỏ các phân số giống nhau)
\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(A=\frac{1}{4}+\frac{2}{9}\)
\(A=\frac{17}{36}\)
phần b, c bn lm tương tự như phần a nha
\(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\)
\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{x+1}=\frac{1}{30}\)
\(x+1=30\)
\(x=29\)
\(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+....+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\left(x\ne0;x\ne-1\right)\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
\(\Leftrightarrow\frac{x+1}{3\left(x+1\right)}-\frac{3}{3\left(x+1\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{x-2}{3\left(x+1\right)}=\frac{3}{10}\)
<=> 10(x-2)=3.3(x+1)
<=> 10x-20=9(x+1)
<=> 10x-20=9x+1
<=> 10x-20-9x-1=0
<=> x-21=0
<=> x=21 (tmđk)
Vậy x=21
Mik tính nhầm,kết quả là\(\frac{6}{16}\)=\(\frac{3}{8}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
= \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}+\dfrac{1}{7}-\dfrac{1}{7}+\dfrac{1}{8}\)
= \(\dfrac{1}{2} +\dfrac{1}{8}\)
\(= \dfrac{5}{8}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
=\(\frac{49}{50}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{49\times50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}.\)
b \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{x+1}\)\(=\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{100}\)
=> x+1 =100
=>x=99
b) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(\Rightarrow x=99\)
c) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{50}{99}\)
\(\Rightarrow50.\left(x+2\right)=99\)
\(\Rightarrow x+2=\frac{99}{50}\)
\(\Rightarrow x=-\frac{1}{99}\)
d) Ta có : 6 = 1.6 = 2.3 = (-2) . (-3)
Lâp bảng xét 6 trường hợp:
\(2x+1\) | \(1\) | \(6\) | \(2\) | \(3\) | \(-2\) | \(-3\) |
\(y-2\) | \(6\) | \(1\) | \(3\) | \(2\) | \(-3\) | \(-2\) |
\(x\) | \(0\) | \(\frac{5}{2}\) | \(\frac{1}{2}\) | \(1\) | \(-\frac{3}{2}\) | \(-2\) |
\(y\) | \(8\) | \(3\) | \(5\) | \(4\) | \(-1\) | \(0\) |
Vậy các cặp (x,y) \(\inℤ\)thỏa mãn là : (0;4) ; (1; 4) ; (-2 ; 0)
e) \(x^2-3xy+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)-\left(x-3y\right)=1\)
\(\Rightarrow\left(x-3y\right)\left(x-1\right)=1\)
Lại có : 1 = 1.1 = (-1) . (-1)
Lập bảng xét các trường hợp :
\(x-1\) | \(1\) | \(-1\) |
\(x-3y\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
\(y\) | \(\frac{1}{3}\) | \(\frac{1}{3}\) |
Vậy các cặp(x,y) thỏa mãn là : \(\left(2;\frac{1}{3}\right);\left(0;\frac{1}{3}\right)\)
1) \(\frac{1}{5}-\frac{1}{6}=\frac{6-5}{5.6}=\frac{1}{5.6}\)
\(\frac{1}{6}-\frac{1}{7}=\frac{7-6}{6.7}=\frac{1}{6.7}\)
2) Áp dụng bài trên, ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
= \(1-\frac{1}{6}=\frac{5}{6}\)
Quá dễ:
=> 1/3 - 1/4 + 1/4 - 1/5 + ....+ 1/x - 1/x+1 = 3/10
=> 1/3 - 1/x+1 = 3/10
=> 1/x+1 = 1/3 - 3/10
Còn lại tự làm nhá!
<=> 1/3 - 1/(x+1) = 3/10
<=> 1/(x+1) = 1/30
=> x+1 = 30
<=> x= 29