\(\in N\)biết: \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Ta có

\(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}\)

\(=\frac{n^2+n-2}{\left(n+1\right)n}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Áp dụng vào bài toán ta có

\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+x}\right)=\frac{672}{2017}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(x-1\right)\left(x+2\right)}{x\left(x+1\right)}=\frac{672}{2017}\)

\(\Leftrightarrow\frac{1}{3}.\frac{x+2}{x}=\frac{672}{2017}\)

\(\Leftrightarrow2017x+4034=2016x\)

  1. \(\Leftrightarrow x=-4034\)
22 tháng 11 2016

Đề đúng không thế sao t ra đáp số là số âm ta

19 tháng 11 2016

Ta có

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow\frac{1}{1+2+...+n}=\frac{2}{n\left(n+1\right)}\)

\(\Rightarrow1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)

\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Áp dụng vào bài toán ta được

\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+x}\right)=\frac{672}{2017}\)

\(\Leftrightarrow\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{\left(x-1\right)\left(x+2\right)}{x\left(x+1\right)}=\frac{672}{2017}\)

\(\Leftrightarrow\frac{1}{3}.\frac{\left(x+2\right)}{x}=\frac{672}{2017}\)

\(\Leftrightarrow2016x=2017\left(x+2\right)\)

Đề có thể bị sai rồi bạn

\(\Leftrightarrow x=\)

17 tháng 12 2016

Tính nhanh: \(=\frac{1}{x}-\frac{1}{x+6}\)

24 tháng 11 2017

ta có

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

mà x là số nguyên

nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)

20 tháng 9 2020

áp dụng các hằng đẳng thức đáng nhớta được :

1)25x^4-4

2)4a^2-1/4

3)9x^4-y^2

4)1/4x^2-1

5)9/16x^2-4

6)1/4x^4-(5x^2)y+25y^2

7)9a^4-1

20 tháng 9 2020

bạn ơi câu 6 sai rooif 5 bình bằng 25 chứ ko phải 125 nha

4 tháng 4 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)

Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)

=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)

=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)

=> \(x^2-4x-2x+8-x-2=-2x\)

=> \(x^2-5x+6=0\)

=> \(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)

=> x = 3 .

Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)

b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)

Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)

=> \(x\left(x+12\right)=192\)

=> \(x^2+12x-192=0\)

=> \(x^2+2x.6+36-228=0\)

=> \(\left(x+6\right)^2=288\)

=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )

Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)