Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(x+3\right)\)
\(\Leftrightarrow x^2+4x+3=x^2+4.5x+2\)
\(\Leftrightarrow0.5x+2=3\Leftrightarrow0.5x=1\Leftrightarrow x=2\)
\(\frac{x+1}{2x+1}\)\(=\)\(\frac{0,5x+2}{x+3}\)
=> (x+1).(x+3) = (2x+1).(0,5x+2)
=> x2+4x+3 = x2+4,5x+2
=> x2+4x-x2-4,5x = 2-3
=> -0,5x = -1
=> x = -1:-0,5
=> x = 2
a ) \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=3x\left(5x+7\right)-\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
\(\Leftrightarrow15x^2+13x+2=15x^2+16x-7\)
\(\Leftrightarrow13x+2=16x-7\)
\(\Leftrightarrow13x-16x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Rightarrow x=3\)
b ) tương tự
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
#)Giải :
\(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-3-x+\frac{1}{2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3\\x=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}}\)
a) \(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-x=\frac{1}{2}+3\)
\(\Leftrightarrow x=\frac{7}{2}\)
Vậy...
b) \(4x-\left(2x+1\right)=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-1=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-x=3-\frac{1}{3}+1\)
\(\Leftrightarrow x=\frac{11}{3}\)
Vậy ...
c) \(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=7-\frac{1}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\frac{49}{50}=\frac{349}{50}+x\)
\(\Leftrightarrow2x-x=\frac{349}{50}+\frac{49}{50}\)
\(\Leftrightarrow x=\frac{199}{25}\)
Vậy ...
làm hộ mình cái để mai nộp thầy,ai nhanh và đúng thì mình k cho nha
\(a)-3\frac{1}{2}+\frac{1}{3}.\left(x-1\right)=-1\frac{1}{3}:2\frac{1}{3}\)
\(-\frac{7}{2}+\frac{1}{3}.\left(x-1\right)=-\frac{4}{3}:\frac{7}{3}\)
\(-\frac{7}{2}+\frac{1}{3}.\left(x-1\right)=-\frac{4}{7}\)
\(\frac{1}{3}.\left(x-1\right)=-\frac{4}{7}-\frac{-7}{2}\)
\(\frac{1}{3}.\left(x-1\right)=\frac{41}{14}\)
\(\Rightarrow x-1=\frac{41}{14}:\frac{1}{3}\)
\(\Rightarrow x-1=\frac{123}{14}\)
\(\Rightarrow x=\frac{123}{14}+1\)
\(\Rightarrow x=\frac{137}{14}\)
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
Ta có : \(\frac{x+1}{5}=\frac{x+2}{6}\)
\(\Rightarrow\left(x+1\right)6=5\left(x+2\right)\)
\(\Leftrightarrow6x+6=5x+10\)
\(\Leftrightarrow6x-5x=10-6\)
\(\Rightarrow x=4\)
\(\frac{x+1}{2}\)= \(\frac{8}{x+1}\)
x + 1 . x + 1 = 2 . 8
x . 2 = 16
x = 16 : 2
x = 8
\(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\Rightarrow\left(x+1\right)\left(x+3\right)=\left(0,5x+2\right)\left(2x+1\right)\)
\(\Rightarrow x^2+3x+x+3=x^2+0,5x+4x+2\)
\(\Rightarrow x^2+3x+x-x^2-0,5x-4x=2-3\)
\(\Rightarrow-\frac{1}{2}x=-1\)
\(\Rightarrow x=2\)
\(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)
\(\Rightarrow x^2+3x+x+3=x^2+4x+0,5x+2\)
\(\Rightarrow x^2+3x+x+3-x^2-4x-0,5x-2=0\)
\(\Rightarrow1-0,5x=0\)
\(\Rightarrow\frac{1}{2}x=1\Leftrightarrow x=2\)