Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow-3\le x< 1\)
\(\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{15+(-138)}{41}\le x< \frac{1\cdot3}{6}+\frac{1\cdot2}{6}+\frac{1}{6}\)
\(\Rightarrow\frac{-123}{41}\le x< \frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\)
\(\Rightarrow-3\le-3;-2;-1;0< 1\)
\(\Rightarrow x\in\left\{-3;-2;-1;0\right\}\)
~ Hok tốt ~
\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)
\(\Leftrightarrow-3< x< 1\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
\(\frac{x}{5}=\frac{15.5-51}{10}\)
\(\frac{x}{5}=\frac{24}{10}\)
\(\frac{x}{5}=\frac{12}{5}\)
\(x=12\)
a) \(\left(x+\frac{1}{4}\right)^2+\frac{11}{25}=\frac{18}{25}\)
\(\Rightarrow\left(x+\frac{1}{4}\right)^2=\frac{7}{25}\)
\(\Rightarrow\) Không có x
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
1)
\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)=\frac{1}{3}+\left(-1\right)+1=\frac{1}{3}\)
Sửa đề chút nha
\(\frac{x}{2}=\frac{1}{1.2.3}+....+\frac{1}{98.99.100}\)
Ta có công thức tổng quát \(\frac{1}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{2}\left(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\right)\)
\(\Rightarrow\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Áp dụng vào tổng ta có
\(\frac{x}{2}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{99.100}=\frac{4949}{9900}\)
\(\Rightarrow x=\frac{4949}{4950}\)
Bài 4 :
a) \(x=\frac{1}{5}+\frac{2}{11}\Rightarrow x=\frac{21}{55}\)
b) \(\frac{x}{15}=\frac{3}{5}+\frac{-2}{3}\Rightarrow\frac{x}{15}=\frac{-1}{15}\)
\(\Rightarrow15.x=-15\Rightarrow x=-1\)
c) \(\frac{11}{8}+\frac{13}{6}=\frac{85}{x}\Rightarrow\frac{85}{24}=\frac{85}{x}\Rightarrow85.x=2040\Rightarrow x=24\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt ^^
Bài làm
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\frac{123}{41}\le x< 1\)
\(\frac{123}{41}\le x< \frac{41}{41}\)
\(\Rightarrow123\le x< 41\)
\(\Rightarrow x\in\varnothing\)
=> -123 / 41 < hoặc = x < 1
=> -3 < hoặc = x <1
=>x = ( -3 ; -2 ; -1 ; 0 )