\(\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{x\left(x+3\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+......+\frac{1}{x\left(x+3\right)}=\frac{6}{19}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.......+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{6}{19}\)

\(\frac{x+3-1}{x+3}=\frac{6}{19}\)

\(19.\left(x+2\right)=6\left(x+3\right)\)

19x+38=6x+18

13x= -20

x= \(\frac{-20}{13}\)

29 tháng 5 2017

a) \(5\frac{8}{17}:x+\frac{-1}{17}:x+3\frac{1}{17}:17\frac{1}{3}=\frac{4}{17}\)

\(\frac{93}{17}:x+\frac{-1}{17}:x+\frac{52}{17}:\frac{52}{3}=\frac{4}{17}\)

\(\left(\frac{93}{17}+\frac{-1}{17}\right):x+\frac{52}{17}.\frac{3}{52}=\frac{4}{17}\)

\(\frac{92}{17}:x+\frac{3}{17}=\frac{4}{17}\)

\(\frac{92}{17}:x=\frac{4}{17}-\frac{3}{17}\)

\(\frac{92}{17}:x=\frac{1}{17}\)

\(x=\frac{92}{17}:\frac{1}{17}\)

\(x=92\)

b) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{4}\right)+\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{1}{3}.\left(\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{6}{19}:\frac{1}{3}\)

\(1-\frac{1}{x+3}=\frac{18}{19}\)

\(\frac{1}{x+3}=1-\frac{18}{19}\)

\(\frac{1}{x+3}=\frac{1}{19}\)

\(\Rightarrow x+3=19\)

\(\Rightarrow x=19-3\)

\(\Rightarrow x=16\)

23 tháng 4 2016

1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10

=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10

=1/2-1/10

=5/10-1/10

=4/10=2/5

23 tháng 4 2016

\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2}-\frac{1}{10}\)

\(\frac{2}{5}\)

11 tháng 4 2019

A và B dễ 

Bài 2:

sai đề bài vì ngay từ cái phép tính đầu đã ko theo quy luật rồi 

11 tháng 4 2019

\(A=\frac{-3}{5}-\frac{2}{5}+2\)

\(A=-1+2=1\)

\(B=\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}=\frac{1}{4}\)

nÀ NÍ sao lại = đây là dấu trừ hay cộng 1/4

24 tháng 4 2018

\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{9}-\frac{1}{10}\)

\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{10}=\frac{9}{10}\)

\(\frac{2}{5}x=\frac{9}{10}-\frac{3}{10}=\frac{3}{5}\)

\(x=\frac{\frac{3}{5}}{\frac{2}{5}}=\frac{3}{2}\)

24 tháng 4 2018

Ta có: \(\frac{1}{1x2}\)\(\frac{1}{2x3}\)\(\frac{1}{3x4}\)\(\frac{1}{4x5}\)+ .....+ \(\frac{1}{9x10}\)

         = \(1-\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

        = 1 - \(\frac{1}{10}\)

        =  \(\frac{9}{10}\)

11 tháng 4 2019

\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)

\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)

\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)

\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)

\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)

Đến đây là tính dễ rồi :v

\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)

\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)

\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)

\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)

\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)

\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)

Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)

\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)

7 tháng 8 2019

a)x-5=7

=> x=9

b)2.x+6=24

=>2x=18

=>x=9

Tìm x :

a) \(x-5=49:7\)

\(\Leftrightarrow x-5=7\)

\(\Leftrightarrow x=7+5\)

\(\Leftrightarrow x=12\)

Vậy : \(x=12\)

b) \(2x+6=24\)

\(\Leftrightarrow2x=24-6=18\)

\(\Leftrightarrow x=18:2\)

\(\Leftrightarrow x=9\)

Vậy : \(x=9\)

c) \(\frac{1}{3}:x+\frac{1}{2}=5\)

\(\Leftrightarrow\frac{1}{3}:x=5-\frac{1}{2}=\frac{9}{5}\)

\(\Leftrightarrow x=\frac{1}{3}:\frac{9}{5}\)

\(\Leftrightarrow x=\frac{5}{27}\)

Vậy : \(x=\frac{5}{27}\)

d) \(\frac{1}{6}.x-\frac{1}{3}=2\)

\(\Leftrightarrow\frac{1}{6}.x=2-\frac{1}{3}=\frac{5}{3}\)

\(\Leftrightarrow x=\frac{5}{3}:\frac{1}{6}\)

\(\Leftrightarrow x=10\)

Vậy : \(x=10\)

e) \(\frac{x}{27}=\frac{3}{x}\)

\(\Leftrightarrow x.x=27.3\)

\(\Leftrightarrow x^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)\(x\in N\)

\(\Rightarrow x=9\)

Vậy : \(x=9\)

g) \(1200:24-\left(17-x\right)=36\)

\(\Leftrightarrow50-17+x=36\)

\(\Leftrightarrow33+x=36\)

\(\Leftrightarrow x=36-33\)

\(\Leftrightarrow x=3\)

Vậy : \(x=3\)

h) \(674-\left(12+x\right)=427\)

\(\Leftrightarrow12+x=674-427=247\)

\(\Leftrightarrow x=247-12\)

\(\Leftrightarrow x=230\)

Vậy : \(x=230\)

k) \(36.\left(x-9\right)=900\)

\(\Leftrightarrow x-9=900:36\)

\(\Leftrightarrow x-9=25\)

\(\Leftrightarrow x=25+9\)

\(\Leftrightarrow x=34\)

m) \(1,2:x+3,8:x=2,5\)

\(\Leftrightarrow\left(1,2-3,8\right):x=2,5\)

\(\Leftrightarrow-2,6:x=2,5\)

\(\Leftrightarrow x=\frac{-2,6}{2,5}=-\frac{26}{25}\)

Vậy : \(x=-\frac{26}{25}\)

n) \(\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right).x=\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right).x=\frac{1}{3}\)

\(\Leftrightarrow\left[\frac{1}{2}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\right].x=\frac{1}{3}\)

\(\Leftrightarrow\left[\frac{1}{2}.\left(1-\frac{1}{10}\right)\right].x=\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{2}.\frac{9}{10}.x=\frac{1}{3}\)

\(\Leftrightarrow\frac{9}{20}.x=\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{3}:\frac{9}{20}\)

\(\Leftrightarrow x=\frac{20}{27}\)

Vậy : \(x=\frac{20}{27}\)

9 tháng 8 2016

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)

\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)