\(xđểx^3+3x^2+3x-2chiahếtchox-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

chịu mới học có lớp 5 thôi

6 tháng 1 2016

mih nghi cai nay chak chi = 0 thui

 

31 tháng 7 2019

\(x^3+3x^2+3x+1=27\)

\(\Rightarrow x^2\left(x+3\right)+3\left(x+3\right)=35\)

\(\Rightarrow\left(x^2+3\right)\left(x+3\right)=35\)

Từ đây bạn xét các trường hợp !

\(x^3+3x^2+3x+1=27\)

\(\Leftrightarrow\left(x+1\right)^3=3^3\)

\(\Leftrightarrow x+1=3\)

\(\Leftrightarrow x=3-1=2\)

10 tháng 7 2018

a)  Dư của f(x ) chia cho  x+2 là f(-2)

Áp dụng định lý Bơ-zu ta có :

\(f\left(-2\right)=\left(-2\right)^3+3.\left(-2\right)^2+a\)

\(=-8+12+a\)

\(=4+a\)

\(\Leftrightarrow a=-4\)

Vậy để f(x) chia hết cho x+2 => a= -4

b) Dư của f(x ) chia cho x-1 là f(1)

Áp dụng định lí Bơ-zu ta có :

\(f\left(1\right)=1^2-3.1+a\)

\(=1-3+a\)

\(=-2+a\)

\(\Rightarrow a=2\)

Vậy ..............

c)  

Đặt phép chia dọc theo đa thức 1 biến đã sắp xếp

d)  Theo định lí Bơ-zu ta có :

\(f\left(x\right):x+1\)có dư là \(f\left(-1\right)\)

\(f\left(-1\right)=\left(-1\right)^3+a.\left(-1\right)+b\)

\(=-a+b-1\)

Mà theo đề bài cho dư = 7

\(\Rightarrow-a+b-1=7\) 

\(\Rightarrow-a+b=8\) (1)

Tương tự :

\(f\left(x\right):x-1\)có dư là \(f\left(1\right)\)

\(f\left(1\right)=1^3+a.1+b\)

\(=a+b+1\)

Theo đề bài cho dư 7

\(\Rightarrow a+b+1=7\)

\(\Rightarrow a+b=6\)(2)

Từ (1) và (2)              ( cộng vế với vế)

\(\Rightarrow\hept{\begin{cases}a+b=6\\-a+b=8\end{cases}}\)

\(\Rightarrow2b=14\)

\(\Rightarrow b=7\)

\(\Leftrightarrow a+7=6\)

\(\Rightarrow a=-1\)

Vậy \(f\left(x\right)=x^3-x+7\)

a: \(\Leftrightarrow2x-3+14⋮2x-3\)

\(\Leftrightarrow2x-3\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)

hay \(x\in\left\{2;1;\dfrac{5}{2};\dfrac{1}{2};5;-2;\dfrac{17}{2};-\dfrac{11}{2}\right\}\)

b: \(\Leftrightarrow3x+9⋮2x-1\)

\(\Leftrightarrow6x+18⋮2x-1\)

\(\Leftrightarrow2x-1\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

hay \(x\in\left\{1;0;2;-1;4;-3;11;-10\right\}\)

c: \(\Leftrightarrow3x+9⋮3x-4\)

\(\Leftrightarrow3x-4\in\left\{1;-1;13;-13\right\}\)

hay \(x\in\left\{\dfrac{5}{3};1;\dfrac{17}{3};-3\right\}\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

31 tháng 8 2020

c) \(\left(3x+5\right)^2-2\left(2x+3\right)\left(3x+5\right)+\left(2x+3\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left[\left(3x+5\right)-\left(2x+3\right)\right]^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(3x+5-2x-3\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(x+2\right)^2=\left(x+2\right)^3\)

\(\Leftrightarrow\left(x+2\right)^3-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)^2.\left(x+2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2.\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-2;-1\right\}\)

16 tháng 10 2019

1)3.x^2 - 75 = 0

3.x^2 - 3.25 = 0

3.(x^2-25)=0

x^2-5^2=0

(x-5)(x+5)=0

=> x-5=0 hoặc x+5=0

=> x=5 hoặc x=-5

   

16 tháng 10 2019

1) \(3x^2-75=0\)

\(\Leftrightarrow3\left(x^2-25\right)=0\)

\(\Leftrightarrow x^2-25=0\)

\(\Leftrightarrow x^2=25\)

\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)

2) \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

3) \(x^3+3x^2+3x=0\)

\(\Leftrightarrow x^3+3x^2+3x+1=1\)

\(\Leftrightarrow\left(x+1\right)^3=1^3\)

\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)

13 tháng 12 2021

\(\text{A.}\)\(\text{x3+6x2+3x−10}\)