Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng từng bài một thôi bạn!
1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).1^{2016}\)
\(=-\dfrac{5}{13}\)
a)
\(\dfrac{2}{3}-\dfrac{5}{12}x=\dfrac{-8}{3}\)\(\Rightarrow\dfrac{5}{12}x=\dfrac{2}{3}-\left(-\dfrac{8}{3}\right)\)
\(\Rightarrow\dfrac{5}{12}x=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\)
\(\Rightarrow x=\dfrac{10}{3}:\dfrac{5}{12}=8\)
b) \(3x-2\left(2x-1\right)=1\dfrac{1}{3}\)\(\Rightarrow3x-4x+2=\dfrac{4}{3}\)
\(\Rightarrow3x-4x=\dfrac{4}{3}-2\)
\(\Rightarrow-x=-\dfrac{2}{3}\)\(\Rightarrow x=\dfrac{2}{3}\)
c) \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\Rightarrow\left(x+4\right)\left(x+4\right)=20.5\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow\left(x+4\right)^2=10^2\) hoặc \(\left(x+4\right)^2=\left(-10\right)^2\)
=> x+4=10 => x+4=-10
=> x=6 => x=-14
1. \(\left(-\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(-\dfrac{3}{2}\right)^x=\left(-\dfrac{3}{2}\right)^2\)
\(\Rightarrow x=2\)
2.\(3^{2x+2}=9^{10}\)
\(\Rightarrow3^{2x+2}=\left(3^2\right)^{10}\)
\(\Rightarrow3^{2x+2}=3^{20}\)
\(\Rightarrow2x+2=20\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
3)\(3^{3-2x}=27^{13}\)
\(\Rightarrow3^{3-2x}=\left(3^3\right)^{13}\)
\(\Rightarrow3^{3-2x}=3^{39}\)
\(\Rightarrow3-2x=39\)
\(\Rightarrow2x=-36\)
\(\Rightarrow x=-18\)
4)\(5.3^x=7.3^5-2.3^5\)
\(\Rightarrow5.3^x=3^5\left(7-2\right)\)
\(\Rightarrow5.3^x=3^5.5\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)
\(\Leftrightarrow50x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)
\(\Leftrightarrow50x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)
\(\Leftrightarrow50x+\left(1-\dfrac{1}{100}\right)=1\)
\(\Leftrightarrow50x+\dfrac{99}{100}=1\)
\(\Leftrightarrow50x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{5000}\)
b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{202.205}\)
\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)
\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)
\(A=\dfrac{9}{3}\cdot\dfrac{204}{205}=\dfrac{615}{205}\)
a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)=1\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)
Có tất cả : (99 - 1) : 1 + 1 = 99 (số x)
\(\Rightarrow99x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)
\(\Rightarrow99x+\left(1-\dfrac{1}{100}\right)=1\)
\(\Rightarrow99x+\dfrac{99}{100}=1\Rightarrow99x=1-\dfrac{99}{100}\)
\(\Rightarrow99x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{100.99}=\dfrac{1}{9900}\)
b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+....+\dfrac{3^2}{202.205}\)
\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)
\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)
\(A=3\cdot\dfrac{204}{205}=\dfrac{615}{205}\)
\(a,\left|x\right|+\left|x+2\right|=0\)
Với mọi x thì \(\left|x\right|\ge0;\left|x+2\right|\ge0\)
=>\(\left|x\right|+\left|x+2\right|\ge0\) với mọi x
Để \(\left|x\right|+\left|x+2\right|=0thì\)
\(x=0vàx=-2\)
=>\(x\in\varnothing\)
Vậy......
\(b,\left|x\left(x^2-\dfrac{5}{4}\right)\right|=0\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-\dfrac{5}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\pm\dfrac{\sqrt{5}}{4}\end{matrix}\right.\)
Vậy..
\(a,\left|x\right|+\left|x+2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x\right|=0\\\left|x+2\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\left(-2\right)\end{matrix}\right.\)
Mà \(0\ne\left(-2\right)\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho
2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\)
\(\dfrac{y}{5}=4\Rightarrow y=20\)
Vậy x=12 và y=20
a) \(\dfrac{-7}{12}-\left(\dfrac{3}{5}+x\right)=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-7}{12}-\dfrac{3}{5}-x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-71}{60}-x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-71}{60}-\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-29}{15}\)
Vậy \(x=\dfrac{-29}{15}\)
b) \(2017x\left(x-\dfrac{2006}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017x=0\\x-\dfrac{2006}{7}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2006}{7}\end{matrix}\right.\)
Vậy \(x=0\) ; \(x=\dfrac{2006}{7}\)
c) \(5\left(x-2\right)+3x\left(2-x\right)=0\)
\(\Leftrightarrow5\left(x-2\right)-3x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(x=2\) ; \(x=\dfrac{5}{3}\)
\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)
a. x2−113=31
=> x2=144
=> x2=\(\sqrt{144}\)
=> x=\(\pm12\)
c.x4=256
=> x4=44
=> x=\(\pm4\)
Kêu người ta giúp mà ói vào mặt người ta vậy à?