Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-5).(x-3)=0
=> (x-5) hoặc (x-3) =0
*x-5=0
x =0+5=5
*x-3=0
x =0+3=3
Vậy:x thuộc {5;3}
a)Ta có : \(x-5⋮x+2=>x-5-\left(x+2\right)⋮x-2=>-7⋮x-2\)
\(=>x-2\inƯ\left(7\right)\left\{-7;-1;1;7\right\}\)
\(=>x\in\left\{-5;1;3;9\right\}\)
b)Ta có : \(2x+1⋮2x-1=>2x+1-\left(2x-1\right)⋮2x-1=>2⋮2x-1\)
\(=>2x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(=>2x\in\left\{-1;0;2;3\right\}\)
\(=>x\in\left\{0;1\right\}\)(vì \(x\in Z\))
c)\(\left(x+5\right)-3\left(x+5\right)+2⋮x+5=>2⋮x+5=>x+5\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(=>x\in\left\{-7;-6;-4;-3\right\}\)
d)\(x+1⋮x+2=>x+2-1⋮x+2\)
\(=>1⋮x+2=>x+2\inƯ\left(1\right)=\left\{1;-1\right\}=>x\in\left\{-1;-3\right\}\)
Ta có: 2x-1 chia hết cho x-5
=> 2x-10+9 chia hết cho x-5
=> 2(x-5)+9 chia hết cho x-5
=> 9 chia hết cho x-5
Do x là số nguyên nên x-5 là ước của 9
=> x-5 thuộc {-9;-3;-1;1;3;9}
=> x thuộc {-4;2;4;6;8;14}
\(2x-1\) \(⋮\)\(x-5\)
\(\Leftrightarrow\)\(2\left(x-5\right)+9\) \(⋮\) \(x-5\)
Ta thấy \(2\left(x-5\right)\)\(⋮\)\(x-5\)
\(\Rightarrow\)\(9\)\(⋮\)\(x-5\)
hay \(x-5\)\(\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta lập bảng sau:
\(x-5\) \(-9\) \(-3\) \(-1\) \(1\) \(3\) \(9\)
\(x\) \(-4\) \(2\) \(4\) \(6\) \(8\) \(14\)
Vậy....
những câu tiếp theo làm tương tự
Bài 1:
\(c.\) \(2x+1⋮x-1\)
\(\Leftrightarrow\left(2x-2\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
Ta có bẳng sau:
\(x-1\) | \(-1\) | \(1\) | \(3\) | \(-3\) |
\(x\) | \(0\) | \(2\) | \(4\) | \(-2\) |
Vì 5 là số nguyên tố chỉ chia hết cho 1 và chính nó nên x có thể bằng 6 hoặc 2