Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F\left(x\right)=3x-6;x=\dfrac{6}{3}=2\)
\(H\left(x\right)=-5x+30;x=-\dfrac{30}{5}=-6\)
\(G\left(x\right)=\left(x-3\right)\left(16-4x\right)\Leftrightarrow\left[{}\begin{matrix}x-3=0;x=3\\16-4x=0;x=4\end{matrix}\right.\)
\(K\left(x\right)=x^2-81=\left(x-9\right)\left(x+9\right)\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)
\(M\left(x\right)=x^2+7x-8=\left(x-1\right)\left(x+8\right);\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)
\(N\left(x\right)=5x^2+9x+4\)
\(N\left(x\right)=5x^2+5x+4x+4=5x\left(x+1\right)+4\left(x+1\right)\)
\(N\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)
a) \(|3x-1|=|x+3|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=x+3\\-3x+1=x+3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\-2x=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
Vậy x={2;-1}
b) \(|x-1|+3x=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1-3x\\-x+1=1-3x\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=2\\2x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}}\)
Vậy x={\(\frac{1}{2};0\)}
c) làm tương tự câu b)
\(a,\left|5x+4\right|+7=26\\ \left|5x+4\right|=26+7\\ \left|5x+4\right|=33\\ \Rightarrow\left\{{}\begin{matrix}5x+4=33\\5x+4=-33\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x=29\\5x=-29\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{29}{5}\\x=-\dfrac{29}{5}\end{matrix}\right.\)
Các câu sau làm tương tự!
A(x) có 2 nghiệm
B(x) ko có nghiệm
C(x) có 2 nghiệm
mk nghĩ thế chứ làm thì dốt cái này hi i!!!!!!!!!!!!!!!!!!
56876
Tất cả các bài này đều vô nghiệm không biết ai cho đề này giải sặc sừ
Ta có : |9x - 7| = 5x - 3
\(\Leftrightarrow\orbr{\begin{cases}9x-7=5x-3\\-9x+7==5x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}9x-5x=-3+7\\-9x-5x=-3-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=4\\-14x=-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{5}{7}\end{cases}}\)