Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(x^2-9-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy x = 3; x = - 1 là nghiệm của pt.
b, \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
Vậy x = 5; x = 4 là nghiệm của pt.
c, \(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}}\)
Vậy x = - 5/2; x = 1 là nghiệm của pt.
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
a) (x - 4)2 - 36 = 0
=> (x - 4)2 = 36
=> x - 4 = 6 hoặc x - 4 = -6
=> x = 10 hoặc x = -2
b) hình như sai đề bn ạ
c) x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 5)(x - 4) = 0
=> x - 5 = 0 hoặc x - 4 = 0
=> x = 5 hoặc x = 4
a) x2 - 4x - 5 = 0
=> x2 - 5x + x - 5 = 0
=> x(x - 5) + (x - 5) = 0
=> (x + 1)(x - 5) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
b) 4x2 + 7x - 11 = 0
=> 4x2 + 11x - 4x - 11 = 0
=> x(4x + 11) - (4x + 11) = 0
=> (x - 1)(4x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x+11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)
c) -7x2 + 6x + 1 = 0
=> -7x2 + 7x - x + 1 = 0
=> -7x(x - 1) - (x - 1) = 0
=> (-7x - 1)(x - 1) = 0
=> \(\orbr{\begin{cases}-7x-1=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-7x=1\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=1\end{cases}}\)
d) -10x2 + 7x + 3 = 0
=> -10x2 + 10x - 3x + 3 = 0
=> -10x(x - 1) - 3(x - 1) = 0
=> (-10x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}-10x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-10x=3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
Bài 1:
a; (\(x+1\)).(\(x+2\)) - (\(x-1\)).(\(x-5\)) = 0
\(x^2\) + 2\(x\) + \(x+2\) - \(x^2\) + 5\(x\) + \(x\) - 5 = 0
(\(x^2\) - \(x^2\)) + (2\(x\) + \(x+5x+x\))- (5 -2) = 0
0 + (3\(x\) + 5\(x\) + \(x\)) + 0 - 3 = 0
8\(x\) + \(x\) - 3 = 0
9\(x\) = 3
\(x=\dfrac{3}{9}\)
Vậy \(x=\dfrac{1}{3}\)
b; (2\(x\) - 1)2 + 4.(5 - \(x\)) = 15
4\(x^2\) - 4\(x\) + 1 + 20 - 4\(x\) = 15
4\(x^2\) - (4\(x\) + 4\(x\)) + (1 + 20 - 15) = 0
4\(x^2\) - 8\(x\) + 6 = 0
4.(\(x^2\) - 2\(x\) + 1) + 2 = 0
4(\(x-1\))2 + 2 = 0
Vì 4.(\(x-1\))2 ≥ 0 ⇒ 4.(\(x-1\))2 + 2 ≥ 3 > 0 (\(\forall x\))
Vậy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận \(x\) \(\in\) \(\varnothing\)
a/\(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
=> x=1, x=-5/2
b/\(x^2+2x^2-8x+5=0\)
\(\Leftrightarrow3x^2-8x+5=0\)
\(\Leftrightarrow3x^2-3x-5x+5=0\)
\(\Leftrightarrow\left(3x^2-3x\right)-\left(5x-5\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)-5\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(x-1\right)=0\)
=> x=1, x=5/3
a) \(\Leftrightarrow36+3-11x=0\)
\(\Leftrightarrow-11x=-39\)
\(\Leftrightarrow x=\frac{39}{11}\)
b) \(x^2-2x\frac{1}{4}+\frac{1}{16}-\frac{81}{16}=0\)
\(\left(x-\frac{1}{4}\right)^2=\frac{81}{16}\)
\(x-\frac{1}{4}=\frac{9}{4}\)
\(x=\frac{10}{4}=\frac{5}{2}\)
c) \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x^2-4\right)\left(x-3\right)=0\)
\(\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
x = 2 hoặc x = - 2 hoặc x = 3
a) \(\frac{8}{2}\)
b) \(\frac{5}{2}\)
c) x=2 hoạc x=-2 hoặc x=3
a/ => x3 = 64 => x3 = 43 => x = 4
b/ => 4x2 - 12x + 9 - x2 - 10x - 25 = 0
=> 3x2 - 22x - 16 = 0
=> (x - 8)(3x + 2) = 0
=> x - 8 = 0 => x = 8
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
Vậy x = 8 ; x = -2/3
c/ => x3 - x2 - 4x2 + 8x - 4 = 0
=> x3 - 5x2 + 8x - 4 = 0
=> (x - 2)2 (x - 1) = 0
=> (x - 2)2 = 0 => x - 2 = 0 => x = 2
hoặc x - 1 = 0 => x = 1
Vậy x = 2 ; x = 1
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
\(a,x^2-4x-5=0\)
\(\Rightarrow x^2-5x+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{5;-1\right\}\)
$x^2 - 4x - 5 = x^2 + x - 5x - 5 = x(x+1) - 5(x+1) = (x-5)(x+1)$
Suy ra $x^2 - 4x - 5 = 0 \Leftrightarrow (x-5)(x+1) = 0$
$\Leftrightarrow x = -1$ hoặc $x = 5$.