![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng các hằng đẳng thức thôi mà :)
a)\(x^2-2x+1=25\)
=>\(\left(x-1\right)^2=25\)
=>\(\orbr{\begin{cases}x-1=-5\\x-1=5\end{cases}}\)
b)\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
=>\(3\left[\left(x-1\right)^2-x\left(x-5\right)\right]=1\)
=>\(3\left(x^2-2x+1-x^2+5x\right)=1\)
=>\(3\left(3x+1\right)=1\)
=>\(3x+1=\frac{1}{3}\)
=>\(3x=\frac{-2}{3}\)
=>\(x=\frac{-2}{9}\)
c)\(\left(5-2x\right)^2-16=0\)
=>\(\left(5-2x\right)^2-4^2=0\)
=>\(\left(5-2x-4\right)\left(5-2x+4\right)=0\)
=>\(\orbr{\begin{cases}5-2x-4=0\\5-2x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{9}{2}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ( x + 2 )( x + 3 ) - ( x - 2 )( x + 5 ) = 16
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 16
<=> x2 + 5x + 6 - x2 - 3x + 10 = 16
<=> 2x + 16 = 16
<=> 2x = 0
<=> x = 0
b) 3x( 2x - 4 ) - 2x( 3x + 5 ) = 44
<=> 6x2 - 12x - 6x2 - 10x = 44
<=> -22x = 44
<=> x = -2
c) 2( 5x - 8 - 3 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 5x - 11 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 20x2 - 69x + 55 ) = 12x - 16
<=> 40x2 - 138x + 110 = 12x - 16
<=> 40x2 - 138x + 110 - 12x + 16 = 0
<=> 40x2 - 150 + 126 = 0 ( chưa học nghiệm vô tỉ nên để vô nghiệm nha :) )
=> Vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) ta có \(\left(4x-5\right)^3-\left(2x+5\right)\left(16x^2-25\right)=0\)
\(\left(4x-5\right)^3-\left(2x+5\right)\left(4x+5\right)\left(4x-5\right)=0\)
\(\left(4x-5\right)\left[\left(4x-5\right)^2-\left(2x+5\right)\left(4x+5\right)\right]=0\)
\(\left(4x-5\right)\left(16x^2-40x+5^2-8x^2-10x-20x-5^2\right)=0\)
\(\left(4x-5\right)\left(8x^2-70x\right)=0\)
=> \(\orbr{\begin{cases}4x-5=0\\8x^2-70x=0\end{cases}=>\orbr{\begin{cases}4x=5\\x\left(8x-70\right)=0\end{cases}< =>}\orbr{\begin{cases}x=\frac{5}{4}\\\orbr{\begin{cases}x=0\\8x-70=0=>x=\frac{35}{4}\end{cases}}\end{cases}}}\) \(\orbr{\begin{cases}4x-5=0\\8x^2-70x=0\end{cases}< =>\orbr{\begin{cases}x=\frac{5}{4}\\x\left(8x-70\right)=0\end{cases}\orbr{\begin{cases}x=\frac{5}{4}\\\orbr{\begin{cases}x=0\\8x-70=0=>x=\frac{35}{4}\end{cases}}\end{cases}}}}\)
\(\orbr{\begin{cases}4x-5=0\\8x^2-70x=0\end{cases}=>\orbr{\begin{cases}x=\frac{5}{4}\\x\left(8x-70\right)=0\end{cases}}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{35}{4}\end{cases}}\) Vậy \(\orbr{\begin{cases}x=\frac{5}{4}\\x=0\end{cases}}\) hoặc \(x=\frac{35}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,5\left(3x+5\right)-4\left(2x-3\right)=5x+8\left(2x+12\right)+1\)
\(\Rightarrow5\left(3x+5\right)-4\left(2x-3\right)-5x-8\left(2x+12\right)-1=0\)
\(\Rightarrow15x+25-8x+12-5x-16x-96-1=0\)
\(\Rightarrow-14x-60=0\)
\(\Rightarrow-14x=60\) \(\Rightarrow x=-\frac{60}{14}=\frac{-30}{7}\)
\(b,\left(2x+3\right)\left(x-4\right)-\left(3x-5\right)\left(x-4\right)=\left(5-x\right)\left(x-2\right)\)
\(\Rightarrow2x^2+3x-8x-12-3x^2+5x+12x-20=5x-x^2-10+2x\)
\(\Rightarrow-x^2+12x-32=7x-x^2-10\)
\(\Rightarrow-x^2+12x-32-7x+x^2+10=0\)
\(\Rightarrow5x-22=0\)
\(\Rightarrow5x=22\Rightarrow x=\frac{22}{5}\)
a) 5(3x+5)-4(2x-3) = 5x+8(2x+12)+1
15x + 25 - 8x + 12 = 5x + 16x + 96 + 1
15x - 8x - 5x - 16x = 96 + 1 - 25 - 12
-14x = 60
x = \(\frac{60}{-14}\)
x = \(-\frac{30}{7}\)
b) (2x+3)(x-4)-(3x-5)(x-4) = (5-x).(x-2)
(x - 4)(2x + 3 - 3x +5) = 5x - 10 - x2 + 2x
(x - 4)[(2x - 3x) + (3 + 5)] = 5x - 10 - x2 + 2x
(x - 4)(-x + 8) = 5x - 10 - x2 + 2x
-x2 + 8x + 4x - 32 = 5x - 10 - x2 + 2x
(-x2 + x2) + (8x + 4x - 5x - 2x) = -10 + 32
5x = 22
x = \(\frac{22}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ pt đãcho tương đương với
6x\(^2\)+ 21x -2x-7-6x+5x-6x+5= 16
<=>18x=18
=> x=1
b/ pt đã cho tương đương với
10x\(^2\)+9x-10x\(^2\)-15x+2x+3= 8
<=> -4x=5
<=.> x=-\(\frac{5}{4}\)
c/ pt đã cho tương đương với
21x-15x\(^2\)-35+25x+15x\(^2\)-10x+6x-4-2=0
<=>42x=41
<=> x= \(\frac{41}{42}\)
d/ pt đã cho tương đương với
( x\(^2\)+x )(x+6)-x\(^3\)=5x
<=> x\(^3\)+6x\(^2\)+x\(^2\)+6x-x\(^3\)=5x
<=> 8x\(^2\)+6x-5x=0
<=>8x\(^2\)+16x-10x-5x=0
<=> (x+2)2x-5(x+2)=0
<=> (x+2)(2x-5)=0
<=>x+2=0 hoặc 2x+5=0
=> x=-2 hoặc x= -\(\frac{5}{2}\)
Zaza, tự làm nữa đi a~.
a) \(3x\left(x-8\right)+16=2x\)
\(\Rightarrow3x^2-24x+16=2x\)
\(\Rightarrow3x^2-26x+16=0\)
\(\Rightarrow\left(3x^2-24x\right)-\left(2x-16\right)=0\)
\(\Rightarrow3x\left(x-8\right)-2\left(x-8\right)=0\)
\(\Rightarrow\left(x-8\right)\left(3x-2\right)=0\)
Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}x-8=0\\3x-2=0\end{array}\right.\)\(\Rightarrow x\in\left\{8;\frac{2}{3}\right\}\)
b) \(\left(5-x\right)^2=25=5^2=\left(-5\right)^2\)
\(\Rightarrow5-x\in\left\{\pm5\right\}\Rightarrow x\in\left\{0;10\right\}\)