K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

1.

\(x^2\)+\(y^2\)+2y-6x+10=0

=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0

=> (x-3)\(^2\)+(y+1)\(^2\)=0

pt vô nghiệm

7 tháng 8 2017

4.

=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0

=> (x+4)\(^2\)+(3y-2)\(^2\)=0

pt vô nghiệm


15 tháng 9 2018

a ) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)

\(\Leftrightarrow20x^2+8x-\left(20x^2-6x+70x-21\right)=133\)

\(\Leftrightarrow20x^2+8x-20x^2+6x-70x+21=133\)

\(\Leftrightarrow-56x+21=133\)

\(\Leftrightarrow-56x=112\)

\(\Leftrightarrow x=-2\)

Vậy \(x=-2\)

b ) \(3\left(6x-5\right)\left(4x+1\right)-\left(8x+3\right)\left(9x-2\right)=203\)

\(\Leftrightarrow\left(18x-15\right)\left(4x+1\right)-\left(72x^2+27x-16x-6\right)=203\)

\(\Leftrightarrow72x^2-60x+18x-15-72x^2-27x+16x+6=203\)

\(\Leftrightarrow\left(72x^2-72x^2\right)+\left(18x+16x-60x-27x\right)-\left(15-6\right)=203\)

\(\Leftrightarrow-53x-9=203\)

\(\Leftrightarrow-53x=212\)

\(\Leftrightarrow x=-4\)

Vậy \(x=-4\)

15 tháng 9 2018

kcj

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

a. $9x^2-16-(3x-4)(2x+5)=0$

$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$

$\Leftrightarrow (3x-4)(x-1)=0$

$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$

$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.

b.

$x^2+4x=12$

$\Leftrightarrow x^2+4x-12=0$

$\Leftrightarrow (x^2-2x)+(6x-12)=0$

$\Leftrightarrow x(x-2)+6(x-2)=0$

$\Leftrightarrow (x-2)(x+6)=0$

$\Leftrightarrow x-2=0$ hoặc $x+6=0$

$\Leftrightarrow x=2$ hoặc $x=-6$

c.

$x^2-2x=35$

$\Leftrightarrow x^2-2x-35=0$

$\Leftrightarrow (x^2+5x)-(7x+35)=0$

$\Leftrightarrow x(x+5)-7(x+5)=0$

$\Leftrightarrow (x+5)(x-7)=0$

$\Leftrightarrow x+5=0$ hoặc $x-7=0$

$\Leftrightarrow x=-5$ hoặc $x=7$

25 tháng 11 2023

cảm ơn bạn nhìu nha vui

19 tháng 8 2018

\(2x^2+6x-8=0\)

<=> \(2x^2-2x+8x-8=0\)

<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)

<=> \(\left(2x+8\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)

\(2x^2-x-1=0\)

<=> \(2x^2-2x+x-1=0\)

<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)

<=> \(\left(2x+1\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

\(4x^2-5x-9=0\)

<=> \(4x^2+4x-9x-9=0\)

<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)

<=> \(\left(4x-9\right)\left(x+1\right)=0\)

<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)

học tốt

19 tháng 8 2018

\(2x^2+6x-8=0\)

\(< =>2x^2-2x+8x-8=0\)

\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)

\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)

\(\Leftrightarrow x=-4\)hoặc \(x=1\)

20 tháng 10 2020

Bài 1.

a) -2x( -3x + 2 ) - ( x + 2 )2

= 6x2 - 4x - ( x2 + 4x + 4 )

= 6x2 - 4x - x2 - 4x - 4

= 5x2 - 8x - 4

b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )

= x3 + 8 + 2( x + 1 )( x - 1 )

= x3 + 8 + 2( x2 - 1 )

= x3 + 8 + 2x2 - 2

= x3 + 2x2 + 6

c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2

= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1

= 4

d) x2 - 3x + xy - 3y

= x( x - 3 ) + y( x - 3 )

= ( x - 3 )( x + y )

Bài 2.

a) 4x2 - 4xy + y2 = ( 2x - y )2

b) 9x3 - 9x2y - 4x + 4y

= 9x2( x - y ) - 4( x - y )

= ( x - y )( 9x2 - 4 )

= ( x - y )( 3x - 2 )( 3x + 2 )

c) x3 + 2 + 3( x3 - 2 )

= x3 + 2 + 3x3 - 6

= 4x3 - 4

= 4( x3 - 1 )

= 4( x - 1 )( x2 + x + 1 )

Bài 3.

2( x - 2 ) = x2 - 4x + 4

⇔ ( x - 2 )2 - 2( x - 2 ) = 0

⇔ ( x - 2 )( x - 2 - 2 ) = 0

⇔ ( x - 2 )( x - 4 ) = 0

⇔ x = 2 hoặc x = 4