Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x2 - 6x > 0
=> 3x2 > 6x ( Với mọi x )
=> 3xx > 6x
=> 3x > 6 => x > 3
Vậy x > 3 là thỏa mãn yêu cầu
b, ( 2x - 3 ).( 2 - 5x ) \(\le\)0
=> 2x - 3 \(\le\)0 Hoặc 2 - 5x \(\le\)0
Trường hợp 1: 2x - 3 \(\le\)0
=> 2x \(\le\)3
=> x \(\le\)\(\frac{3}{2}\)( 1 )
Trường hợp 2: 2 - 5x \(\le\)0
=> 2 \(\le\)5x
=> x \(\le\frac{2}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra:
x \(\le\frac{3}{2}\)Hoặc x\(\le\frac{2}{5}\)là thỏa mãn
Mà \(\frac{2}{5}< \frac{3}{2}\)suy ra x\(\le\)\(\frac{3}{2}\)Là thỏa mãn yêu cầu
Vậy ....
c, x2 - 4 \(\ge\)0
=> x2 \(\ge\)4
=> x2 \(\ge\)22
=> x \(\ge\)2
Vậy x\(\ge\)2 là thỏa mãn yêu cầu
~Haruko~
\(3x^2-2x-8=0\\ \Leftrightarrow3x^2-2x=8\\ E=6x^2-4x+9\\ =3x^2+3x^2-2x-2x-8+17\\ =\left(3x^2-2x-8\right)+\left(3x^2-2x+17\right)\\ =3x^2-2x+17\\ =\left(3x^2-2x\right)+17=8+17=25\)
\(x+y=0\\ \Leftrightarrow y=-x\\ D=x^4-y^4+x^3y-xy^3\\ =\left(x^2+y^2\right)\left(x^2-y^2\right)+xy\left(x^2-y^2\right)\\ =\left(x^2+y^2+xy\right)\left(x^2-y^2\right)\\ =\left(x^2+\left(-x\right)^2+x.\left(-x\right)\right)\left(x^2-\left(-x\right)^2\right)\\ =\left(x^2+x^2-x^2\right)\left(x^2-x^2\right)\\ =x^2.0=0\)
x2+16x+60=0
<=> x2+10x+6x+60
<=>x(x+10)+6(x+10)
<=>(x+6).(x+10)=0
=>\(\orbr{\begin{cases}x+6=0\\x+10=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-6\\x=-10\end{cases}}\)
b/9x2+6x+1=0
<=>9x2+3x+3x+1
<=>3x(3x+1)+(3x+1)
<=>(3x+1)(3x+1)=0
=> 3x+1=0=> x= \(\frac{-1}{3}\)
c/ x-\(2\sqrt{x}\)-3=0
<=>x+\(\sqrt{x}\)-3\(\sqrt{x}\)-3
<=>\(\sqrt{x}\)(\(\sqrt{x}\)+1)-3(\(\sqrt{x}+1\))
<=>\(\left(\sqrt{x}+1\right).\left(\sqrt{x}-3\right)\)=0
=>\(\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}-3=0\end{cases}}\)<=>\(\orbr{\begin{cases}\sqrt{x}=-1\\\sqrt{x}=3\end{cases}}\)=>\(\orbr{\begin{cases}x\in\Phi\\x\in\left\{9;-9\right\}\end{cases}}\)
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
a) \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy x=1;x=2
b) \(x^2+6x+5=0\)
\(\Leftrightarrow x^2+x+5x+5=0\)
\(\Leftrightarrow x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-1\end{cases}}}\)
Vậy x=-5;x=-1
\(a,x^2-3x+2=0\)
\(x^2-x-2x+2=0\)
\(\left(x-1\right)\left(x-2\right)=0\)
\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
\(b,x^2+6x+5=0\)
\(x^2+x+5x+5=0\)
\(\left(x+1\right)\left(x+5\right)=0\)
\(\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)