Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)
=> -2 < x < 1
Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu)
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
1, x2 = 0
=> x=0
2,x2=1
=> x= 1 hoặc x=-1
3,x2=3
=>\(x=\sqrt{3}\)
4,x2=6
=>\(x=\sqrt{6}\)
5,x2=7
=>\(x=\sqrt{7}\)
\(a,\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\)
=> -1 < x < 2
a, \(\left(x+1\right)\left(x-2\right)< 0\)
th1 :
\(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\left(vl\right)}}\)
th2 :
\(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2\left(tm\right)}}\)
b, \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
th1 :
\(\hept{\begin{cases}\left(x-2\right)>0\\\left(x+\frac{2}{3}\right)>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\Rightarrow}x>2}\)
th2 :
\(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\Rightarrow x< -\frac{2}{3}}}\)
cho em xin khái niệm số hữu tỉ r em giải đoàng hoàng ra cho
Trong toán học, số hữu tỉ là các số x có thể biểu diễn dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên nhưng b{\displaystyle \neq }0. Tập hợp số hữu tỉ ký hiệu là {\displaystyle \mathbb {Q} }.
Một cách tổng quát:
{\displaystyle \mathbb {Q} =\left\{x|x={\frac {m}{n}};m\in \mathbb {Z} ,n\in \mathbb {Z^{*}} \right\}}
Tập hợp số hữu tỉ là tập hợp đếm được.
\(\frac{1}{20}\left(x-\frac{8}{15}\right)=-\frac{1}{30}\) \(\left(28+\frac{1}{5}\right).\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{1}{30}:\frac{1}{20}\) \(\frac{141}{5}.\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{2}{3}\) \(\frac{3}{5}.x+\frac{4}{7}=0\)
\(x=-\frac{2}{3}+\frac{8}{15}\) \(\frac{3}{5}.x=-\frac{4}{7}\)
\(x=-\frac{2}{15}\) \(x=-\frac{20}{21}\)
a,
\(\left(\dfrac{3}{5}x-\dfrac{2}{3}x-x\right)\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)
\(\Rightarrow\dfrac{-16}{15}x\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)
\(\Rightarrow\dfrac{-16}{15}x=\dfrac{-\dfrac{5}{21}}{\dfrac{1}{7}}=-\dfrac{5}{3}\)
\(\Rightarrow x=\dfrac{-\dfrac{5}{3}}{-\dfrac{16}{15}}=\dfrac{25}{16}\)
b,
\(\left(5x-1\right)\left(2x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\2x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
c,
\(\dfrac{5\left|x+1\right|}{2}=\dfrac{90}{\left|x+1\right|}\)
\(\Rightarrow5\left|x+1\right|^2=180\)
\(\Rightarrow\left|x+1\right|^2=36\)
Mà \(\left|x+1\right|\ge0\)
=> x + 1 = 6 <=> x = 7
a) (2 - x)(2x + 1) > 0
TH1: \(\hept{\begin{cases}2-x>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>-\frac{1}{2}\end{cases}\Rightarrow}-\frac{1}{2}< x< 2}\)
TH2: \(\hept{\begin{cases}2-x< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< -\frac{1}{2}\end{cases}\left(vl\right)}}\)(vô lí)
Vậy: -1/2 < x < 2
b) (2x+3)(x + 1) < 0
TH1: \(\hept{\begin{cases}2x+3>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-\frac{3}{2}\\x< -1\end{cases}\Rightarrow-\frac{3}{2}< x< -1}}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}\left(x< -\frac{3}{2}\right)\\x>-1\end{cases}}\left(vl\right)}\)(vô lí)
Vậy -3/2 < x < -1