Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8x(x-2017)-2x+4034=0
\(\Leftrightarrow\)8x(x-2017)-2(x-2017)=0
\(\Leftrightarrow\)(x-2017)(8x-2)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2017=0\\8x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2017\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy x\(\in\left\{2017;\frac{1}{4}\right\}\)
a) Thiếu VP
b) 4 - x = 2( x - 4 )2
<=> 4 - x = 2( x2 - 8x + 16 )
<=> 4 - x = 2x2 - 16x + 32
<=> 2x2 - 16x + 32 - 4 + x = 0
<=> 2x2 - 15x + 28 = 0
<=> 2x2 - 8x - 7x + 28 = 0
<=> 2x( x - 4 ) - 7( x - 4 ) = 0
<=> ( x - 4 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}x-4=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{7}{2}\end{cases}}\)
c) ( x2 + 1 )( x - 2 ) + 2x = 4
<=> x3 - 2x2 + 3x - 2 - 4 = 0
<=> x3 - 2x2 + 3x - 6 = 0
<=> x2( x - 2 ) + 3( x - 2 ) = 0
<=> ( x - 2 )( x2 + 3 ) = 0
<=> x = 2 ( vì x2 + 3 ≥ 3 > 0 ∀ x )
a, thiếu
b, \(4-x=2\left(x-4\right)^2\Leftrightarrow4-x=2\left(x^2-8x+16\right)\)
\(\Leftrightarrow4-x=2x^2-16x+32\Leftrightarrow2x^2-15x+28=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-7\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{7}{2}\end{cases}}\)
c, \(\left(x^2+1\right)\left(x-2\right)+2x=4\Leftrightarrow x^3-2x^2+3x-6=0\Leftrightarrow x_1=2;x_2=\sqrt{3}i\)
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
x³ + 2x = 0
x(x² + 2) = 0
x = 0 hoặc x² + 2 = 0
*) x² + 2 = 0
x² = -2 (vô lí)
Vậy x = 0
--------------------
8x(x - 2017) - 2x + 4034) = 0
8x(x - 2017) - 2(x - 2017) = 0
(x - 2017)(8x - 2) = 0
x - 2017 = 0 hoặc 8x - 2 = 0
*) x - 2017 = 0
x = 2017
*) 8x - 2 = 0
8x = 2
x = 1/4
Vậy x = 1/4; x = 2017
1)x^3+2x=0
<=>x(x^2+2)=0
<=>x^2=-2(vô lý)
2)8x(x-2017)-2x+4034=0
<=>(x-2017)(8x-2)=0
<=>X=2017,x=1/4
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
\(8x\left(x-2017\right)-2x+4034=0\)\(\Leftrightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\Leftrightarrow2\left(x-2017\right)\cdot\left(4x-1\right)=0\)\(\Leftrightarrow\hept{\begin{cases}x-2017=0\\4x-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)
Vậy \(x=2017\)hoặc \(x=\frac{1}{4}\)
8x( x - 2017 ) - 2x + 4034 = 0
<=> 8x( x - 2017 ) - 2( x - 2017 ) = 0
<=> ( 8x - 2 )( x - 2017 ) = 0
<=> \(\orbr{\begin{cases}8x-2=0\\x-2017=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2017\end{cases}}\)