Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
S = (3;6)
b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)
c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)
d) đkxđ : x khác -1
\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)
e) đk x >= 3/2
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm
f) đk x >= -3/4
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm