Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5x(x - 1) - (1 - x) = 0
=> 5x(x - 1) + (x - 1) = 0
=> (x - 1)(5x + 1) = 0
=> x - 1 = 0 hoặc 5x - 1 = 0
=> x = 1 hoặc x = \(\dfrac{1}{5}\)
b, (x - 3)2 - (x + 3)2 = 24
=> (x - 3 + x + 3)(x - 3 - x - 3) = 24
=> 2x. (-6) = 24
=> -12x = 24
=> x = -2
c, 2x(x2 - 4) = 0
=> 2x(x - 2)(x + 2) = 0
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
d, 2(x + 5)2 - x2 - 5x = 0
=> 2(x + 5)2 - x(x + 5) = 0
=> (x + 5) [2(x + 5) - x] = 0
=> (x + 5) (2x - 10 - x) = 0
=> (x + 5) ( x - 10) = 0
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=10\end{matrix}\right.\)
e, (2x - 3)2 - (x +5)2 = 0
=> (2x - 3 + x + 5) (2x - 3 - x - 5) = 0
=> (3x + 2)(x - 8) = 0
\(\Rightarrow\left[{}\begin{matrix}3x+2=0\\x-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2}{3}\\x=8\end{matrix}\right.\)
f, 3x2 - 48x = 0
=> 3x(x - 16) = 0
\(\Rightarrow\left[{}\begin{matrix}3x=0\\x-16=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
chúc bạn học tốt!
câu a bạn sai đề nha
b)
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x^4+x^2+1+2x^3+2x^2+2x=3x^4+3x^2+3\)
\(2\left(x^3+x^2+x\right)=2\left(x^4+x^2+1\right)\)
\(x^4-x^3+1-x=0\)
\(x^3\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^3-1\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\x^3-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)
Bài 1 :
a) 2x3-3+3x2+8=0
b) x3-1=0
Bài 2 :
a) (x2-5x)2 + 10.(x2-5x)+24=0
b) (x+2)(x+3)(x-5)(x-6)=180
Bài 1:
a) Bạn xem lại đề
b)
\(x^3-1=0\)
\(\Leftrightarrow (x-1)(x^2+x+1)=0\)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}x+(\frac{1}{2})^2+\frac{3}{4}=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0\)
\(\Rightarrow x^2+x+1\neq 0\)
Do đó: \(x-1=0\Rightarrow x=1\) là nghiệm duy nhất
Bài 2:
a) \((x^2-5x)^2+10(x^2-5x)+24=0\)
\(\Leftrightarrow (x^2-5x)^2+2.5(x^2-5x)+5^2-1=0\)
\(\Leftrightarrow (x^2-5x+5)^2-1=0\)
\(\Leftrightarrow (x^2-5x+5-1)(x^2-5x+5+1)=0\)
\(\Leftrightarrow (x^2-5x+4)(x^2-5x+6)=0\)
\(\Leftrightarrow (x-1)(x-4)(x-2)(x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-4=0\\ x-2=0\\ x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=4\\ x=2\\ x=3\end{matrix}\right.\)
b)
\((x+2)(x+3)(x-5)(x-6)=180\)
\(\Leftrightarrow [(x+2)(x-5)][(x+3)(x-6)]=180\)
\(\Leftrightarrow (x^2-3x-10)(x^2-3x-18)=180\)
\(\Leftrightarrow a(a-8)=180\) (đặt \(x^2-3x-10=a\) )
\(\Leftrightarrow a^2-8a+16-196=0\)
\(\Leftrightarrow (a-4)^2-14^2=0\)
\(\Leftrightarrow (a-4-14)(a-4+14)=0\Leftrightarrow (a-18)(a+10)=0\)
\(\Rightarrow a=18\) hoặc $a=-10$
+) Nếu $a=18$ thì \(x^2-3x-10=18\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow (x-7)(x+4)=0\Rightarrow \left[\begin{matrix} x=7\\ x=-4\end{matrix}\right.\)
+) Nếu $a=-10$ thì \(x^2-3x-10=-10\Leftrightarrow x^2-3x=0\Leftrightarrow x(x-3)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=3\end{matrix}\right.\)
Vậy pt có 4 nghiệm \(x\in \left\{7;-4;0;3\right\}\)
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
1 ) \(x\left(a-b\right)+a-b=\left(x+1\right)\left(a-b\right)\)
2 ) \(2x\left(b-a\right)+a-b=2x\left(b-a\right)-\left(b-a\right)=\left(2x-1\right)\left(b-a\right)\)
3 ) \(-2x-2y+ax+ay=-2\left(x+y\right)+a\left(x+y\right)=\left(a-2\right)\left(x+y\right)\)
4 ) \(x^2-xy-2x+2y=x\left(x-y\right)-2\left(x-y\right)=\left(x-2\right)\left(x-y\right)\)
5 ) \(5x^2y+5xy^2+a^2x+a^2y\)
\(=5xy\left(x+y\right)+a^2\left(x+y\right)\)
\(=\left(5xy+a^2\right)\left(x+y\right)\)
6 ) \(2x^2-6xy+5x-15y\)
\(=2x\left(x-3y\right)+5\left(x-3y\right)\)
\(=\left(2x+5\right)\left(x-3y\right)\)
7 ) \(ax^2-3axy+bx-3by\)
\(=\left(ax^2+bx\right)-\left(3axy+3by\right)\)
\(=x\left(ax+b\right)-3y\left(ax+b\right)\)
\(=\left(x-3y\right)\left(ax+b\right)\)
8 ) \(x^2+4x-5x-20=0\)
\(\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
9 ) \(x^2+10x-2x-20=0\)
\(\Leftrightarrow x\left(x+10\right)-2\left(x+10\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
10 ) \(x^2-6x-4x+24=0\)
\(\Leftrightarrow x\left(x-6\right)-4\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
:D
Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Rightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right).1+1-25=0\)
\(\Rightarrow\left(x^2-5x+1\right)^2-25=0\)
\(\Rightarrow\left(x^2-5x+1+5\right)\left(x^2+5x+1-5\right)=0\)
\(\Rightarrow\left(x^2-5x+6\right)\left(x^2-5x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-5x+6=0\\x^2-5x-4=0\end{cases}}\)
TH1 : \(x^2-5x+6=0\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Th2 : \(x^2-5x+4=0\Rightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)
5x ( x + 1 ) ( x - 1 ) > 0
đầu tiên , giải quyết cho 5x ( x + 1 ) ( x - 1 ) = 0
5x = 0 x = 0
5x ( x + 1 ) ( x - 1 ) = 0 - > x + 1 = 0 - > x = -1
x - 1 = 0 x = 1
a) \(x^3\)+\(x^2\)=36
\(\Leftrightarrow\)\(x^3\)+\(x^2\)\(-36=0\)
\(\Leftrightarrow\)\(x^3\)\(-3x^2\)\(+4x^2\)\(-12x\)\(+12x-36=0\)
\(\Leftrightarrow\)\(x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2+4x+12\right)=0\)
Suy ra: \(x-3=0\) hoặc \(x^2+4x+12=0\)
Vậy \(x=3\)
giờ mình đi học mai sẽ làm nốt phần còn lại