Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+5x+6-x^2-3x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
\(b,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(8x+16-5x^2-10x+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
\(a,\)\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow x^2+5x+6-x^2-3x+10=0\)
\(\Rightarrow2x=-16\Leftrightarrow x=-8\)
\(b,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow8x+16-5x^2-10x+4\left(x^2-x+2\right)+2\left(x^2-4\right)=0\)
\(\Rightarrow8x+16x-5x^2-10x+4x^2-4x+8+2x^2-8=0\)
\(\Rightarrow x^2+10x=0\Rightarrow x\left(x+10\right)=0\Rightarrow x\in\left\{0;-10\right\}\)

\(a.\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-4x-4=5\)
\(\left(-4x-6x\right)+\left(4-9\right)-4x-4=5\)
\(-10x-5-4x-4=5\)
\(-14x-9=5\)
\(-14x=14\Rightarrow x=-1\)
\(b.\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(4x^2-9-x^2+2x-1-3x^2+15x=-44\)
\(17x-10=-44\)
\(17x=-34\Rightarrow x=-2\)
\(c.\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(25x^2+10x+1-\left(25x^2-9\right)=30\)
\(10x+10=30\)
\(10x=20\Rightarrow x=2\)
\(d.\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(\left(x^2+6x+9\right)+\left(x^2-4\right)-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x+3=7\)
\(10x=4\Rightarrow x=\frac{4}{10}=\frac25\)
\(f.\left(3x-8\right)^2=0\)
\(3x-8=0\Rightarrow x=\frac83\)
\(e.6\left(x+1\right)^2-2\left(x+1\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)
\(6\left(x^2+2x+1\right)-2x-2+2\left(x^3-1\right)=0\)
\(6x^2+12x+6-2x-2+2x^3-2=0\)
\(2x^3+6x^2+10x+2=0\)
\(\Rightarrow x\approx-0,23\)

a) (x + 2)(x + 3) - (x - 2)(x + 5) = 0
<=> x2 + 3x + 2x + 6 - (x2 + 5x - 2x - 10) = 0
<=> x2 + 3x + 2x + 6 - x2 - 5x + 2x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
<=> (2x + 3)(x - 4) + (x - 5)(x - 2) - (3x - 5)(x - 4) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - (3x2 - 12x - 5x + 20) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - 3x2 + 12x + 5x - 20 = 0
<=> 5x = 12 - 10 + 20
<=> 5x = 22
<=> x = 22/5
c) (8 - 5x)(x + 2) + 4(x - 2)(x + 1) + 2(x - 2)(x + 2) = 0
<=> 8x + 16 - 5x2 - 10x + (4x - 8)(x + 1) + 2(x2 - 4) = 0
<=> 8x + 16 - 5x2 - 10x + 4x2 + 4x - 8x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x(x - 6) = 0
<=> x = 0 hay x - 6 = 0
I<=> x = 6
d) (8x - 3)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
<=> 24x2 + 16x - 9x - 6 - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
<=> 24x2 + 16x - 9x - 6 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
<=> 10x2 - 19x = 0
<=> x(10x - 19) = 0
<=> x = 0 hay 10x - 19 = 0
I <=> 10x = 19
I <=> x = 19/10

\(a,\left(x+8\right)\left(x+6\right)-x^2=104\)
\(\Rightarrow x^2+14x+48-x^2=104\)
\(\Rightarrow14x=56\)
\(\Rightarrow x=4\)
Vậy x=4
a) (x+2)(x+3)-(x-2)(x+5)=0
\(x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Vậy......
b) (8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)=0
\(8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2+4x-4x-8=0\)
\(-6x+x^2=0\)
\(x\left(-6+x\right)=0\)
=> x=0 hoặc -6+x=0 <=>x=6
Vậy \(x\in\left\{0;6\right\}\)
a) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+2\right)x+\left(x+2\right).3-\left(x+5\right)x+\left(x+5\right).2=0\)
\(\Leftrightarrow x^2+2x+3x+6-x^2+5x+2x+10=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow12x=-16\)
\(\Leftrightarrow x=\frac{-4}{3}\)
Vậy...