
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, 4x2 - 9 = 0 => (2x)2 = 9 => 2x = 3 hoặc 2x = -3 => x = 3/2 hoặc x = -3/2
b, 2x2 + 0,36 = 1 => 2x2 = 0,64 => x2 = 0,32 = 8/25 => \(\orbr{\begin{cases}x=\sqrt{\frac{8}{25}}\\x=-\sqrt{\frac{8}{25}}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2\sqrt{2}}{5}\\x=\frac{-2\sqrt{2}}{5}\end{cases}}\)
c, \(\frac{5}{12}.\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)
\(\Rightarrow\frac{5}{12}.\sqrt{x}=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}\)
\(\Rightarrow\sqrt{x}=\frac{1}{2}\div\frac{5}{12}\)
\(\Rightarrow\sqrt{x}=\frac{6}{5}\)
\(\Rightarrow x=\left(\frac{6}{5}\right)^2=\frac{36}{25}\)
d, 3x2 + 7 = -4 => 3x2 = -4 - 7 => 3x2 = -11 => x2 = -11/3 (vô lý) => x ∈ Ø


a: \(x^2+4x-1=0\)
=>\(x^2+4x+4-5=0\)
=>\(\left(x+2\right)^2=5\)
=>\(\left[\begin{array}{l}x+2=\sqrt5\\ x+2=-\sqrt5\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\sqrt5-2\\ x=-\sqrt5-2\end{array}\right.\)
b: \(2x^2-4x+1=0\)
=>\(2\left(x^2-2x+\frac12\right)=0\)
=>\(x^2-2x+\frac12=0\)
=>\(x^2-2x+1-\frac12=0\)
=>\(\left(x-1\right)^2=\frac12\)
=>\(\left[\begin{array}{l}x-1=\frac{\sqrt2}{2}\\ x-1=-\frac{\sqrt2}{2}\end{array}\right.\Longrightarrow\left[\begin{array}{l}x=\frac{\sqrt2+2}{2}\\ x=\frac{-\sqrt2+2}{2}\end{array}\right.\)
c: \(\left(2x-1\right)\left(x+2\right)-\left(x-1\right)\left(x-2\right)=2x-9\)
=>\(2x^2+4x-x-2-\left(x^2-3x+2\right)-2x+9=0\)
=>\(2x^2+x+7-x^2+3x-2=0\)
=>\(x^2+4x+5=0\)
=>\(x^2+4x+4+1=0\)
=>\(\left(x+2\right)^2+1=0\) (vô lý)
=>Phương trình vô nghiệm
d: \(\left(x-1\right)\cdot x\cdot\left(x+1\right)\left(x+2\right)=8\)
=>\(x\left(x+1\right)\left(x+2\right)\left(x-1\right)=8\)
=>\(\left(x^2+x\right)\left(x^2+x-2\right)=8\)
=>\(\left(x^2+x\right)^2-2\left(x^2+x\right)-8=0\)
=>\(\left(x^2+x-4\right)\left(x^2+x+2\right)=0\)
mà \(x^2+x+2=x^2+x+\frac14+\frac74=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)
nên \(x^2+x-4=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-4\right)=1+16=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[\begin{array}{l}x=\frac{-1-\sqrt{17}}{2\cdot1}=\frac{-1-\sqrt{17}}{2}\\ x=\frac{-1+\sqrt{17}}{2\cdot1}=\frac{-1+\sqrt{17}}{2}\end{array}\right.\)

a) \(\left(x-4\right)\left(x^2+1\right)=0\)
\(\Rightarrow\) Có 2 trường hợp:
1) x - 4 = 0 \(\Rightarrow\)x = 4
2) \(x^2+1=0\Rightarrow x^2=-1\) .Mà \(x^2\ge0\forall x\Rightarrow x\in\varnothing\)
Vậy x =4
b) \(3.x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\Rightarrow\) Có 2 trường hợp:
1) x = 0
2) 3x - 4 = 0 \(\Rightarrow\) 3x = 4 \(\Rightarrow x=\frac{4}{3}\)
Vậy \(x\in\left\{0;\frac{4}{3}\right\}\)
c) \(x^2+9=0\)
\(\Rightarrow x^2=-9\) . Mà \(x^2\ge0\forall x\Rightarrow x\in\varnothing\)
Vậy \(x\varnothing\in\)
a) \(x^2=\frac{4}{9}\)
\(\Rightarrow x=\frac{2}{3}\)
b)\(x=0,6\)
a) \(x=\frac{2}{3};x=-\frac{2}{3}\)
b) \(x=0,6;x=-0,6\)
c) \(x=0,5;x=-0,5\)
d)\(x=-1\)