Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
a)\(x\left(x+2\right)-3x-6=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x-3\right)\left(x+2\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b)\(x^3+3x^2+3x-1-3x^2-3x=0\)
=>\(x^3-1=0\)
=>x3=1
=>x=1
a) Ta có: \(\left(x-1\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot3\cdot\left(x-2\right)=0\)
Vì 3≠0
nên \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: x∈{1;2}
b) Ta có: \(\left(2x+5\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-5}{2};\frac{1}{3}\right\}\)
c) Ta có: \(\left(x+1\right)\left(2x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};\frac{5}{3}\right\}\)
d) Ta có: \(6\left(x-2\right)\left(x-4\right)\left(1-7x\right)=0\)
Vì 6≠0
nên \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;4;\frac{1}{7}\right\}\)
e) Ta có: \(\left(x+1\right)^2\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy: x∈{-1;-2}
f) Ta có: \(\left(3x-2\right)^2\cdot\left(x+1\right)\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3x-2\right)^2=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{2}{3};-1;2\right\}\)
g) Ta có: \(\left(5-x\right)^2\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(5-x\right)^2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5-x=0\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{1}{3}\right\}\)
h) Ta có: \(\left(14-2x\right)^2\cdot\left(3-x\right)\cdot\left(2x-4\right)=0\)
\(\Leftrightarrow4\left(7-x\right)^2\cdot\left(3-x\right)\cdot2\cdot\left(x-2\right)=0\)
\(\Leftrightarrow8\cdot\left(7-x\right)^2\cdot\left(3-x\right)\cdot\left(x-2\right)=0\)
Vì 8≠0
nên \(\left[{}\begin{matrix}\left(7-x\right)^2=0\\3-x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7-x=0\\x=3\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\\x=2\end{matrix}\right.\)
Vậy: x∈{7;3;2}
i) Ta có: \(\left(5x-6\right)^2\cdot\left(x+2\right)\cdot\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(5x-6\right)^2=0\\x+2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x-6=0\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=6\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{5}\\x=-2\\x=-10\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{6}{5};-2;-10\right\}\)
j) Ta có: \(\left(3x-3\right)^3\cdot\left(x+4\right)=0\)
\(\Leftrightarrow27\cdot\left(x-1\right)^3\cdot\left(x+4\right)=0\)
Vì 27≠0
nên \(\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy: x∈{1;-4}