Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+1+3\sqrt{x}-3-\left(6x-10\sqrt{x}+4\right)}{x-1}\)
\(=\frac{x+1+3\sqrt{x}-3-6x+10\sqrt{x}-4}{x-1}=\frac{-5x+13x-6}{x-1}\)
b) \(P< \frac{1}{2}\Leftrightarrow\frac{-5x+13x-6}{x-1}< \frac{1}{2}\Leftrightarrow2\left(-5x+13x-6\right)< x-1\)
\(\Leftrightarrow-10x+26x-12< x-1\)
\(\Leftrightarrow15x< 11\Leftrightarrow x< \frac{11}{15}\)
Vậy để P < 1/2 khi x < 11/15
P/s: Không biết đúng hay sai, mong các anh chị chiếu cố
Ukm
It's very hard
l can't do it
Sorry!
a) \(ĐKXĐ:x\ge-1\)
\(\sqrt{x+1}=2\)\(\Rightarrow\left(\sqrt{x+1}\right)^2=4\)
\(\Rightarrow x+1=4\)\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )
Vậy \(x=3\)
b) \(ĐKXĐ:x\ge2\)
\(2\sqrt{x-2}< 6\)\(\Leftrightarrow\sqrt{x-2}< 3\)
Vì \(\sqrt{x-2}\ge0\); \(3>0\)
\(\Rightarrow\left(\sqrt{x-2}\right)^2< 9\)\(\Leftrightarrow x-2< 9\)
\(\Leftrightarrow x< 11\)
Kết hợp với ĐKXĐ \(\Rightarrow2\le x< 11\)
Vậy \(2\le x< 11\)
c) \(ĐKXĐ:x\ge4\)
\(\sqrt{x^2-16}=-\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x^2-16}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}.\left(\sqrt{x+4}+1\right)=0\)
Vì \(\sqrt{x+4}>0\)\(\Rightarrow\sqrt{x+4}+1>0\)
\(\Rightarrow\sqrt{x-4}=0\)\(\Leftrightarrow x-4=0\)\(\Leftrightarrow x=4\)
Vậy \(x=4\)
a) ĐK: \(x\ge0;x\ne1\)
Trước tiên chúng ta tính:
\(1-x\sqrt{x}=1-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)
\(1+x\sqrt{x}=1+\left(\sqrt{x}\right)^3=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)
khi đó:
P = \(\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)
\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)^2\)
\(=\left(x-1\right)^2\)
b) \(P< 7-4\sqrt{3}=4-2.2.\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)
=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)
<=> \(\sqrt{3}-2< x-1< 2-\sqrt{3}\)
<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)
Đối chiếu điều kiện: \(\sqrt{3}-1< x< 3-\sqrt{3}\) và x khác 1.
4.a)\(x-2\sqrt{x}+3\)
\(=x-2\sqrt{x}+1+2\)
\(=\left(\sqrt{x}-1\right)^2+2\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)
\(\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
b)Ta có:
\(x-4\sqrt{y}+13\ge0\)
\(\Leftrightarrow x-4\sqrt{y}\ge-13\)
Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)
Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)
c)Ta có:
\(2x-4\sqrt{y}+6\ge0\)
\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)
\(\Leftrightarrow x-2\sqrt{y}\ge-3\)
Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)
Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)
d)Ta có:
\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)
\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)
Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)
a)\(\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{1}{x-4}\left(ĐKXĐ:x\ne4;x\ge0\right)\)
\(=\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\left(x-4\right)\)
\(=2\sqrt{x}\)
b)Tại A=6 ta có:\(2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Rightarrow x=9\)
c)Tại A<4 ta đc:\(2\sqrt{x}< 4\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Rightarrow x< 4\)
a) Ta có: \(\sqrt{x}-1=6\)
\(\Leftrightarrow\sqrt{x}=7\)
hay x=49
Vậy: x=49
b) Ta có: \(\sqrt{x}< 4\)
nên x<16
Vậy: \(0\le x< 16\)