\(-4x+6x^2=0\)

b, \(\frac{1}{4}x^2-x=3\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2020

-4x + 6x2 = 0

=> -2x(3x + 2) = 0

=> x(3x + 2) = 0

=> \(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)

b) \(\frac{1}{4}x^2-x=3\)

=> \(\frac{1}{4}x^2-x-3=0\)

=> \(\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1-4=0\)

=> \(\left(\frac{1}{2}x-1\right)^2-2^2=0\)

=> \(\left(\frac{1}{2}x-1-2\right)\left(\frac{1}{2}x-1+2\right)=0\)

=> \(\left(\frac{x}{2}-3\right)\left(\frac{x}{2}+1\right)=0\)

=> \(\orbr{\begin{cases}\frac{x}{2}-3=0\\\frac{x}{2}+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)

21 tháng 11 2020

a, \(-4x+6x^2=0\Leftrightarrow2x\left(-2+3x\right)=0\)

TH1 : x = 0 

TH2 : \(-2+3x=0\Leftrightarrow x=\frac{2}{3}\)

b, \(\frac{1}{4}x^2-x=3\Leftrightarrow\frac{1}{4}x^2-x-3=0\)

\(\Leftrightarrow\left(\frac{1}{2}x-1\right)^2-4=0\Leftrightarrow\left(\frac{1}{2}x-3\right)\left(\frac{1}{2}x+1\right)=0\)

TH1 : \(\frac{1}{2}x-3=0\Leftrightarrow\frac{1}{2}x=3\Leftrightarrow x=6\)

TH2 : \(\frac{1}{2}x+1=0\Leftrightarrow\frac{1}{2}x=-1\Leftrightarrow x=-2\)

2 tháng 7 2017

a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)

Quy đồng :

\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)

\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

c ) MTC : \(\left(x+2\right)^3\)

\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)

\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)

\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)

24 tháng 4 2019

a. \(x^2-4x+3\le0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(3x-3\right)\le0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\left(Vo.li\right)\\\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\end{matrix}\right.\)

Vậy \(1\le x\le3\)

b. \(9x^2-6x\ge0\)

\(\Leftrightarrow3x\left(3x-2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\ge0\\3x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x\le0\\3x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(0\le x\le\frac{2}{3}\)

c. Câu c cậu tự làm nha, tớ đang có việc. Quy đồng lên rồi tính bình thường thôi.

27 tháng 8 2017

\(a,\)\(x^4-4x^3+4x^2=0\)

\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b,\)\(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

\(c,\)\(9x-6x^2-3=0\)

\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)

\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(d,\)\(2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+4x+x+2=0\)

\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

1 tháng 9 2020

a) x3 + 3x2 + 3x + 1 = 64

=> (x + 1)3 = 64

=> (x + 1)3 = 43

=> x + 1 = 4 => x = 3

b) x3 + 6x2 + 9x = 4x

=> x3 + 6x2 + 9x - 4x = 0

=> x3 + 6x2 + 5x = 0

=> x3 + 5x2 + x2 + 5x = 0

=> x2(x + 5) + x(x + 5) = 0

=> (x + 5)(x2 + x) = 0

=> (x + 5)x(x + 1) = 0

=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)

c) 4(x - 2)2 = (x + 2)2

=> 4(x2 - 4x + 4) = x2 + 4x + 4

=> 4x2 - 16x + 16 = x2 + 4x + 4

=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0

=> 3x2 - 20x + 12 = 0

=> 3x2 - 18x - 2x + 12 = 0

=> 3x(x - 6) - 2(x - 6) = 0

=> (x - 6)(3x - 2) = 0

=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)

d) x4 - 16x2 = 0

=> x2(x2 - 16) = 0

=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

e) x4 - 4x3 + x2 - 4x = 0

=> x4 + x2 - 4x3 - 4x = 0

=> x2(x2 + 1) - 4x(x2 + 1) = 0

=> (x2 - 4x)(x2 + 1) = 0

=> x(x - 4)(x2 + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)

f) x3 + x = 0 => x(x2  + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)

1 tháng 9 2020

\(a,x^3+3x^2+3x+1=64\)

\(\left(x+1\right)^3=64\)

\(\left(x+1\right)^3=4^3\)

\(x+1=4\)

\(x=3\)

10 tháng 12 2016

b/ 

\(\frac{1}{x^3-1}=\frac{a}{x-1}+\frac{6x+c}{x^2+x+1}=\frac{\left(a+6\right)x^2+\left(c+a-6\right)x-c+a}{x^3-1}\)

Đồng nhất thức 2 vế ta được

\(\hept{\begin{cases}a+6=0\\c+a-6=0\\a-c=1\end{cases}}\)

Vô nghiệm vậy không tồn tại a, c thỏa cái đó

10 tháng 12 2016

a/ Ta có

\(\frac{10x-4}{x^3-4x}=\frac{a}{x}+\frac{b}{x-2}+\frac{c}{x+2}=\frac{\left(a+b+c\right)x^2+\left(2b-2c\right)x-4a}{x^3-4x}\)

Đồng nhất thức 2 vế ta được

\(\hept{\begin{cases}a+b+c=0\\2b-2c=10\\-4a=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}\)

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12 \(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\) \(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6 \(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6 \(\Leftrightarrow\) 11x = 9 \(\Leftrightarrow\) x = 0,8 Vậy S = {0,8} 2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12 \(\Leftrightarrow\)...
Đọc tiếp

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)

\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6

\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6

\(\Leftrightarrow\) 11x = 9

\(\Leftrightarrow\) x = 0,8

Vậy S = {0,8}

2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12

\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)

\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x

\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20

\(\Leftrightarrow\) 17x = 7

\(\Leftrightarrow\) x = \(\frac{7}{17}\)

Vậy S = {\(\frac{7}{17}\)}

3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15

\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)

\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3

\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3

\(\Leftrightarrow\) 4x = 2

\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)

Vậy S = {\(\frac{1}{2}\)}

4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12

\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)

\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24

\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24

\(\Leftrightarrow\) 5x = -58

\(\Leftrightarrow\) x = -11,6

Vậy S = {-11,6}

5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)

\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x

\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10

\(\Leftrightarrow\) -8x = -1

\(\Leftrightarrow\) x = \(\frac{1}{8}\)

Vậy S = {\(\frac{1}{8}\)}

6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12

\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)

\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x

\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3

\(\Leftrightarrow\) -5x = -2

\(\Leftrightarrow x=\frac{2}{5}\)

7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)

\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0

\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4

\(\Leftrightarrow\) -3x = -18

\(\Leftrightarrow\) x = 6

Vậy S = {6}

8) x\(^2\) - x - 6 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0

\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0

\(\Leftrightarrow\) (x - 3).(x + 2) = 0

\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0

\(\Leftrightarrow\) x = 3 hoặc x = -2

Vậy S = {3; -2}

0
17 tháng 2 2020

f/ ĐKXĐ: x khác 0

\(\Leftrightarrow\frac{1}{x}+2=2x^2+x+4+\frac{2}{x}\)

\(\Leftrightarrow2x^2+x+2+\frac{1}{x}=0\)

\(\Leftrightarrow x\left(2x+1+\frac{2}{x}+\frac{1}{x^2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\2x+1+\frac{2x+1}{x^2}=0\end{matrix}\right.\)

\(\Rightarrow\left(2x+1\right)\left(1+\frac{1}{x^2}\right)=0\Rightarrow x=-\frac{1}{2}\)( vì 1+1/x^2>0)

17 tháng 2 2020

a/\(\Leftrightarrow\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{x+4}{\left(x-1\right)\left(x-2\right)}-\frac{x+4}{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1}{\left(x-1\right)\left(x-3\right)}\right)=0\)

\(\Rightarrow x=-4\)