Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x2(x+1)+2x(x+1)=0
=>(x2+2x)(x+1)=0
=>x(x+2)(x+1)=0
=>x=0 hoặc x+2=0 hoặc x+1=0
=>x=0 hoặc x=-2 hoặc x=-1
b)x(3x-2)-5(2-3x)=0
=>x(3x-2)+5(3x-2)=0
=>(x+5)(3x-2)
=>x+5=0 hoặc 3x-1=0
=>x=-5 hoặc \(x=\frac{2}{3}\)
c)\(\frac{4}{9}-25x^2=0\)
\(\Rightarrow\left(\frac{2}{3}\right)^2-\left(5x\right)^2=0\)
\(\Rightarrow\left(\frac{2}{3}-5x\right)\left(\frac{2}{3}+5x\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}\frac{2}{3}-5x=0\\\frac{2}{3}+5x=0\end{array}\right.\)
\(\Rightarrow x=\pm\frac{2}{15}\)
d)\(x^2-x+\frac{1}{4}=0\)
\(\Rightarrow\frac{4x^2}{4}-\frac{4x}{4}+\frac{1}{4}=0\)
\(\Rightarrow\frac{4x^2-4x+1}{4}=0\)
\(\Rightarrow4x^2-4x+1=0\)
\(\Rightarrow\left(2x-1\right)^2=0\)
\(\Rightarrow x=\frac{1}{2}\)
a)17*91,5+170*0,85
=17*91,5+17*10*0,85
=17*91,5+17*8,5
=17*(91,5+8,5)
=17*100
=1700
b)20162-162
=(2016+16)(2016-16)
=2032*2000
=4064000
c)x(x-1)-y(1-x)
=x(x-1)+y(x-1)
=(x-1)(x+y)
Thay x=2001 và y=2999 đc:
=(2001-1)(2001+2999)
=2000*5000
=10 000 000
Bài 2:đk x khác -1 đặt luôn x+1=y y khác 0
\(\Leftrightarrow k\left(y+1\right)-3k+3=y\Leftrightarrow\left(k-1\right)y-2k+3=0\) (*)
với k=1 => 0.y-2+3=1=0 vô nghiệm
với k khác 1 ta có \(y=\frac{2k-3}{k-1}\)
Đk x<0=> y<1
\(\frac{2k-3}{k-1}< 1\Leftrightarrow\frac{2k-3-k+1}{k-1}=\frac{k-2}{k-1}< 0\Rightarrow1< k< 2\)
Bài 3: ĐK x khác -1
\(4-t=\frac{2}{x+1}\Leftrightarrow\left(4-t\right)\left(x+1\right)=2\) (*)
Với t=4 có 0.(x+1)=2 => vô nghiệm
với t khác 4 => (x+1)=2/(4-t)=> x=2/(4-t)-1
nghiệm dương => \(\frac{2}{4-t}-1>0\Rightarrow\frac{2+t-4}{4-t}=\frac{t-2}{4-t}>0\Rightarrow2< t< 4\)
Bổ xung: với bài này không ảnh hửng đến đáp số
Bài 2: cần giải thêm
\(\frac{2k-3}{k-1}\ne0\Rightarrow k\ne\frac{3}{2}\)
Bài 3 giải thêm
\(\frac{t-2}{4-t}\ne-1\)
Bài 2: kết luận nhầm : \(1< k< 2\)
Bài 3:
\(\left\{\begin{matrix}x\ne1\\\left(4-t\right)\left(x+1\right)=2\Leftrightarrow4+4x-tx-t=2\end{matrix}\right.\)
\(\Leftrightarrow\left(4-t\right)x=t-2\)
\(\Leftrightarrow\left\{\begin{matrix}t=4\\0.x=2\rightarrow Vo.N_0\end{matrix}\right.\)
\(\left\{\begin{matrix}t\ne4\\x=\frac{t-2}{4-t}\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}x>0\\\frac{t-2}{4-t}>0\end{matrix}\right.\)\(\Rightarrow2< t< 4\)
Kết luận: \(2< t< 4\)
Bài 1+1
\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}=1\Leftrightarrow k\left(x+2\right)-3\left(k-1\right)=\left(x+2\right)-1\) Đặt:\(\left\{\begin{matrix}x+2=y\\k-1=t\\x< 0\Rightarrow y< 2\end{matrix}\right.\)
\(\Leftrightarrow ky-y=3\left(k-1\right)-1\Leftrightarrow ty=3t-1\)(1)
\(\left\{\begin{matrix}t=0\Rightarrow k=1\\\left(1\right)\Leftrightarrow0.y=-1\Rightarrow voN_o\end{matrix}\right.\)
\(\left\{\begin{matrix}t\ne0\Rightarrow k\ne1\\y=\frac{3t-1}{t}\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}y< 2\\\frac{3t-1}{t}< 2\end{matrix}\right.\)\(\Leftrightarrow\frac{3t-1-2t}{t}< 0\) \(\Leftrightarrow\frac{t-1}{t}< 0\)\(\Leftrightarrow0< t< 1\) \(\Rightarrow-1< k< 0\)
Kết luận: \(-1< k< 0\)
a) \(4.\left(x-1\right)^2-9=0\)
\(\Rightarrow4.\left(x-1\right)^2=9\)
\(\Rightarrow\left(x-1\right)^2=9:4=\dfrac{9}{4}=\left(\pm\dfrac{3}{2}\right)^2\)
\(\Rightarrow x-1=\pm\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b) \(\dfrac{1}{4}-9.\left(x-1\right)^2=0\)
\(\Rightarrow9.\left(x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\left(x-1^2\right)=\dfrac{1}{36}=(\pm\dfrac{1}{6})^2\)
\(\Rightarrow x-1=\pm\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{6}\\x-1=\dfrac{-1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
e) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\)
\(\Rightarrow\left(2x+\dfrac{3}{4}\right)^2=\dfrac{1}{16}=\left(\pm\dfrac{1}{4}\right)^2\)
\(\Rightarrow2x+\dfrac{3}{4}=\pm\dfrac{1}{4}\)
\(\Rightarrow\)\(\left[{}\begin{matrix}2x+\dfrac{3}{4}=\dfrac{1}{4}\\2x+\dfrac{3}{4}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
a)(x+1)(x2+2x)=(x+1)x(x+2)=0
\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\x=0\\x+2=0=>x=-2\end{matrix}\right.\)
b)x(3x-2)-5(2-3x)=x(3x-2)+5(3x-2)=(3x-2)(x+5)=0
\(=>\left\{{}\begin{matrix}3x-2=0=>x=\dfrac{2}{3}\\x+5=0=>x=-5\end{matrix}\right.\)
c)\(\dfrac{4}{9}-25x^2=\left(\dfrac{2}{3}\right)^2-\left(5x\right)^2=\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)\)
=0
\(=>\left\{{}\begin{matrix}\dfrac{2}{3}-5x=0=>x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0=>x=\dfrac{-2}{15}\end{matrix}\right.\)
d)\(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2=0\)
\(=>x-\dfrac{1}{2}=0=>x=\dfrac{1}{2}\)
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)
a) \(2-25x^2=0\)
\(25x^2=2\)
\(x^2=\frac{2}{25}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{2}{25}}\\x=-\sqrt{\frac{2}{25}}\end{cases}}\)
Vậy \(x=\sqrt{\frac{2}{25}}\)hoặc \(x=-\sqrt{\frac{2}{25}}\)
b) \(x^2-x+\frac{1}{4}=0\)
\(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Cho mk hỏi ngu một chút: vì sao 25x2 = 2