Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a) \(9x^2-12x+4\)
\(=9x^2-6x-6x+4\)
\(=3x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(3x-2\right)^2\)
b) \(2xy+16-x^2-y^2\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left(x-y\right)^2+16\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
c) \(3x+2x^2-2\)
\(=2x^2+4x-x-2\)
\(=2x\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(2x-1\right)\)
toàn hằng đẳng thức (1) và (2) thôi mà bạn, đọc SGK 8 tập 1 là hiểu ngay. Có gì khó hiểu hỏi nhé!
a, x2-6x +9 = (x-3)2
b, 4x2+4x +1 = (2x)2+2.2x.1 +12=(2x+1)2
c, 9x2 -12x +4 = (3x-2)2
d, 25x2 -10x +1= (5x -1)2
e, x4-4x2+4 = (x2 -2)2
f, x2 +8x +16 = (x+4)2
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
\(4x^2-4x-5=4x^2-4x+1-6=\left(2x-1\right)^2-6\ge-6\)
\(Min=-6\Leftrightarrow x=\dfrac{1}{2}\)
\(4x^2+12x+10=4\left(x^2+3x+\dfrac{9}{4}\right)+1=4\left(x+\dfrac{3}{2}\right)^2+1\ge1\)
\(Min=1\Leftrightarrow x=-\dfrac{3}{2}\)
\(4x^2-12x-5=4\left(x^2-3x+\dfrac{9}{4}\right)-14=4\left(x-\dfrac{3}{2}\right)^2-14\ge-14\)
\(Min=-14\Leftrightarrow x=\dfrac{3}{2}\)
\(9x^2+12x+8=\left(9x^2+12x+4\right)+4=\left(3x+2\right)^2+4\ge4\)
\(Min=4\Leftrightarrow x=-\dfrac{2}{3}\)
1. Ta có: \(f\left(x\right)=9x^2-12x+1=\left(3x\right)^2-2.3x.2+2^2-3\)
\(=\left(3x-2\right)^2-3\)
Vì \(\left(3x-2\right)^2\ge0\) với mọi x \(\Rightarrow\left(3x-2\right)^2-3\ge-3\) hay \(f\left(x\right)\ge-3\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(3x-2\right)^2=0\Rightarrow3x-2=0\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
Vậy min f(x) =-3 khi \(x=\dfrac{2}{3}\)
2. Ta có: \(f\left(x\right)=2x^2-7x+5=2.\left(x^2-3,5x\right)+5=2.\left(x^2-2.x.1,75+1,75^2\right)-2.1,75^2+5\)
\(=2.\left(x-1,75\right)^2-1,125\)
Vì \(2.\left(x-1,75\right)^2\ge0\Rightarrow2.\left(x-1,75\right)^2-1,125\ge-1,125\Rightarrow f\left(x\right)\ge-1,125\)
Dấu ''='' xảy ra \(\Leftrightarrow2.\left(x-1,75\right)^2=0\Rightarrow x-1,75=0\Rightarrow x=1,75\)
Vậy min f(x)=-1,125 khi x=1,75
3.\(3x^2-10x=3.\left(x^2-\dfrac{10}{3}x\right)=3.\left(x^2-2.x.\dfrac{5}{3}\right)\)
\(=3.\left[x^2-2.x.\dfrac{5}{3}+\left(\dfrac{5}{3}\right)^2\right]-3.\left(\dfrac{5}{3}\right)^2\)
\(=3.\left(x-\dfrac{5}{3}\right)^2-\dfrac{25}{3}\)
Vì \(3.\left(x-\dfrac{5}{3}\right)^2\ge0\Rightarrow3.\left(x-\dfrac{5}{3}\right)^2-\dfrac{25}{3}\ge-\dfrac{25}{3}\Rightarrow f\left(x\right)\ge-\dfrac{25}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow3.\left(x-\dfrac{5}{3}\right)^2=0\Rightarrow x-\dfrac{5}{3}=0\Rightarrow x=\dfrac{5}{3}\)
Vậy min f(x)=\(-\dfrac{25}{3}\) khi \(x=\dfrac{5}{3}\)
1) Ta có: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)
\(\Leftrightarrow x^2+2x+5x+10-12x+9=25-10x+x^2\)
\(\Leftrightarrow x^2-5x+19-25+10x-x^2=0\)
\(\Leftrightarrow5x-6=0\)
\(\Leftrightarrow5x=6\)
\(\Leftrightarrow x=\frac{6}{5}\)
Vậy: \(x=\frac{6}{5}\)
2) Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2+12x+8=0\)
\(\Leftrightarrow12x+24=0\)
\(\Leftrightarrow12x=-24\)
\(\Leftrightarrow x=-2\)
Vậy: x=-2
3) Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x-30=0\)
\(\Leftrightarrow15x-30=0\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=2\)
Vậy: x=2
4) Ta có: \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x-81=0\)
\(\Leftrightarrow83x-83=0\)
\(\Leftrightarrow83x=83\)
\(\Leftrightarrow x=1\)
Vậy: x=1
a)\(2x+143=557\)
\(\Leftrightarrow2x=557-143\)
\(\Leftrightarrow2x=414\)
\(\Leftrightarrow x=414\div2\)
\(\Leftrightarrow x=207\)
Vậy x = 207
a) 3x^3-12x=0
3x(x^2-4)=0
3x(x-2)(x+2)=0
suy ra 3x=0 suy ra x=0
x-2=0 x=2
x+2=0 x= -2
b) (x-3)^2-(x-3)(3-x)^2=0
(x-3)^2-(x-3)(x-3)^2=0
(x-3)^2(1-x+3)=0
(x-3)^2(4-x)=0
suy ra x-3=0 suy ra x=3
4-x=0 x=4
a) và b) đã nhé bạn
<=>(3x)2-12x+4=0
<=>(3x-2)2=0
<=> 3x-2=0
<=>3x=2
<=>x=2/3
\(9x^2+4=12x\)
=> \(9x^2-12x+4=0\)
=>\(\left(3x\right)^2-2.3.2.x+2^2=0\)
=> \(\left(3x-2\right)^2=0\)
=> \(3x-2=0\)
=> \(x=\frac{2}{3}\)