Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x + 5x + 1 = 750
=> 5x . 1 + 5x . 5 = 750
=> 5x (1 + 5) = 750
=> 5x . 6 = 750
=> 5x = 750 : 6 = 125
=> x = 3
\(5^{x+1}+5^{x+2}=750\)
\(5^x.5+5^x.5^2=750\)
\(5^x.5+5^x.25=750\)
\(5^x.\left(5+25\right)=750\)
\(5^x.30=750\)
\(5^x=750:30\)
\(5^x=25\)
\(5^x=5^2\)
\(\Rightarrow x=2\)
1: Tìm x
a) Ta có: \(\left(2x-1\right)^3=-27\)
\(\Leftrightarrow2x-1=-3\)
\(\Leftrightarrow2x=-3+1=-2\)
hay x=-1
Vậy: x=-1
b) Ta có: \(\left(2x-3\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=-5\\2x-3=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5+3=-2\\2x=5+3=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;4\right\}\)
c) Ta có: \(\left(x-2\right)^5=\left(x-2\right)^7\)
\(\Leftrightarrow\left(x-2\right)^5-\left(x-2\right)^7=0\)
\(\Leftrightarrow\left(x-2\right)^5\left[1-\left(x-2\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left[1-\left(x-2\right)\right]\cdot\left[1+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(1-x+2\right)\cdot\left(1+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(-x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^5=0\\-x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x=-3\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2;3\right\}\)
d) Ta có: \(5^{x+2}+5^{x+3}=750\)
\(\Leftrightarrow5^{x+2}\cdot1+5^{x+2}\cdot5=750\)
\(\Leftrightarrow5^{x+2}\left(1+5\right)=750\)
\(\Leftrightarrow5^{x+2}\cdot6=750\)
\(\Leftrightarrow5^{x+2}=125\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
\(5^{x+1}+5^{x+2}=750\)
\(\Leftrightarrow5^x.5^1+5^x.5^2=750\)
\(\Leftrightarrow5^x.5+5^x.25=750\)
\(\Leftrightarrow5^x.\left(5+25\right)=750\)
\(\Leftrightarrow5^x.30=750\)
\(\Leftrightarrow5^x=750:30\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Rightarrow x=2\)
5x + 1 + 5x + 2 = 750
=> 5x . 5 + 5x . 52 = 750
=> 5x . (5 + 52) = 750
=> 5x . (5 + 25) = 750
=> 5x . 30 = 750
=> 5x = 750 : 30
=> 5x = 25
=> 5x = 52
=> x = 2
Vậy x = 2
\(5^{x+2}+5^{x+3}=750\)
\(5^x.5^2+5^x.5^3=750\)
\(5^x.25+5^x\cdot125=750\)
\(5^x.\left(25+125\right)=750\)
\(5^x.150=750\)
\(5^x=750:150\)
\(5^x=5\)
\(5^x=5^1\)
\(\Rightarrow x=1\)
a) \(5^{x+2}\)+ \(5^{x+3}\)=625
\(5^x\). \(2^x\)+ \(5^x\) . \(3^x\)=625
\(5^x\). (\(2^x\)+ \(3^x\) ) =625
\(5^x\). \(5^x\) =625
\(25^x\) =625
\(25^x\)= \(25^2\)
vậy x=2
hình như câu a bn ghi nhầm 625 thành 750
a) => 5x.52 + 5x.53=750
=> 5x . (52+53) =750
=> 5x . 150 =750
=> 5x = 750 : 150
=> 5x = 5
=> x =1
Vậy x = 1
b) => 32x+1 . 7y = 32 . (3.7)x
=> 32x+1 . 7y = 3x+2 . 7x
=> \(\dfrac{3^{2x+1}}{3^{x+2}}\) =\(\dfrac{7^x}{7^y}\)
=> 3(2x+1)-(x+2) = 7x-y
=> 3x-1 = 7x-y
=>\(\left\{{}\begin{matrix}x-1=0\\x-y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\x=y\end{matrix}\right.\)
=>x=y=1
Vậy x=y=1
c)
=>\(\dfrac{3^{3x}}{3^{2x-y}}\) =35 và =>\(\dfrac{5^{2x}}{5^{x+y}}\) =53
=> 3(3x)-(2x-y) =35 =>5(2x)-(x+y) =53
=> 33x-2x+y =35 => 52x-x-y =53
=> 3x+y =35 => 5x-y =53
=> x+y =5 (1) => x-y =3 (2)
Từ (1) và (2) có :
+x = (5+3):2 =4
+y = (5-3):2 =1
Vậy x=4 ; y=1
- Nếu làm đúng cho mình xin cái tick ! Tks
1) \(M=\frac{x^2+y^2+7}{x^2+y^2+5}=1+\frac{2}{x^2+y^2+5}\)
Ta có: \(x^2+y^2\ge0,\forall x;y\)
=> \(x^2+y^2+5\ge5\) với mọi x; y
=> \(\frac{2}{x^2+y^2+5}\le\frac{2}{5}\)
=> \(M\le1+\frac{2}{5}=\frac{7}{5}\)
Dấu "=" xảy ra <=> x = y = 0
Vậy max M = 7/5 đạt tại x = y = 0
2) \(f\left(x-1\right)=x^2-3x+5=x^2-x-2x+2+3\)
\(=x\left(x-1\right)-2\left(x-1\right)+3=x\left(x-1\right)-\left(x-1\right)-\left(x-1\right)+3\)
\(=\left(x-1\right)\left(x-1\right)-\left(x-1\right)+3\)
=> \(f\left(x\right)=x.x-x+3=x^2-x+3\)
\(5^x+5^{x+1}=750\)
\(5^x=750\)
\(5^x.6=750\)
\(5^x=750:6\)
\(5^x=125\)
\(5^x=5^3\)
\(\Rightarrow x=3\)
5^x + 5^x+1 = 750
<=> 5^x + 5^x . 5 = 750
<=> 5^x.(1+5) = 750
<=> 5^x . 6 = 750
<=> 5^x = 750 : 6 = 125 = 5^3
=> x = 3