K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

<=>( 5x-3)2-(2(x+1))2=0

<=> [5x-3-2(x+1)]*[5x-3+2(x+1)]=0

<=> ( 5x -3 -2x-2)*(5x-3+2x+2)=0

<=> (3x-5)*(7x-1)=0

<=> 3x-5 =0 hoặc 7x-1=0

=> x = 5/3 HOẶC X = 1/7

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

25 tháng 7 2019

a. (5x-1)2  -  (5x-4) (5x-4) +7

= (5x-1)2 - (5x-4) + 7

=[(5x-1)+(5x-4)] [(5x-1)-(5x-4)] +7  ( đoạn này bỏ cx đc)

=(10x-5) .3+7

=30x-15+7

=30x-8

25 tháng 7 2019

ý a hơi sai sai

16 tháng 7 2018

a)  \(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

b)  \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-3\right)\)

c)  \(x^2-2x-4y^2+1\)

\(=\left(x-1\right)^2-4y^2\)

\(=\left(x-2y-1\right)\left(x+2y-1\right)\)

11 tháng 8 2018

Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

Đặt \(x^2+5x=a\) . Phương trình trở thành :

\(a^2-2a-24=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)

Với \(a=-4\)

\(\Leftrightarrow x^2+5x=-4\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Với \(a=6\)

\(\Leftrightarrow x^2+5x=6\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{-1;2;-3;-4\right\}\)

11 tháng 8 2018

1) x4 - 5x2 + 4 = 0

⇔ x4 - x2 - 4x2 + 4 = 0

⇔ x2(x2 - 1) - 4(x2 - 1) = 0

⇔ (x2 - 1)(x2 - 4) = 0

\(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)

Vậy \(x=\pm1\)\(x=\pm2\)

5 tháng 8 2016

1,

<=> \(\left(x-1\right)\left(x-2\right)^2=0\)

=> x=1 hoặc x=2

2, 

<=>\(\left(x+1\right)\left(2x^2-3x+6\right)\)=0

=> x=-1

18 tháng 7 2017

1.

<=> ( x -1 ) ( x - 2 ) 2 = 0

=> x = 1 hoặc x = 2

2.

<=> ( x + 1 ) ( 2x2 - 3x + 6 ) = 0

=> x = -1

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2

9 tháng 7 2018

A )  \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)

\(\Leftrightarrow3\left(x^2-2x+1\right)-3x^2+15x=1\)

\(\Leftrightarrow3x^2-6x+3-3x^2+15x=1\)

\(\Leftrightarrow7x+3=1\)

\(\Leftrightarrow7x=-2\)

\(\Leftrightarrow x=\frac{-2}{7}\)

B)  \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\left(6x-2\right)^2+\left(5x-2\right)^2-2.2\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\left(6x-2\right)^2+\left(5x-2\right)^2-2\left(6x-2\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\left[\left(6x-2\right)-\left(5x-2\right)\right]^2=0\)

\(\Leftrightarrow\left(6x-2\right)\left(5x-2\right)=0\)

\(\Leftrightarrow6x-2-5x+2=0\)

\(\Leftrightarrow x=0\)

9 tháng 7 2018

câu a sai rồi bạn ơi câu b thì đúng

28 tháng 9 2018

\(2x\left(x-3\right)-x+3=0\)

<=>  \(2x\left(x-3\right)-\left(x-3\right)=0\)

<=>  \(\left(x-3\right)\left(2x-1\right)=0\)

<=>  \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)

Vậy...

19 tháng 8 2020

Bài làm:

a) \(x+5x^2=0\)

\(\Leftrightarrow x\left(1+5x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)

b) \(x\left(x-1\right)=x-1\)

\(\Leftrightarrow x^2-x-x+1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

c) \(5x\left(x-1\right)=1-x\)

\(\Leftrightarrow5x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)

d) \(\left(3x-4\right)^2-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-5\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)

19 tháng 8 2020

\(a,x+5x^2=0< =>x\left(5x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=0\\5x+1=0\end{cases}< =>\orbr{\begin{cases}x=0\\5x=-1\end{cases}< =>\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}}}\)

\(b,x\left(x-1\right)=x-1< =>x^2-x=x-1\)

\(< =>x^2-x-x+1=0< =>x\left(x-1\right)-\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(x-1\right)=0< =>x=1\)

\(c,5x\left(x-1\right)=1-x< =>5x^2-5x=1-x\)

\(< =>5x^2-5x+x-1=0< =>5x^2-4x-1=0\)

\(< =>5x^2-5x+x-1=0< =>5x\left(x-1\right)+x-1=0\)

\(< =>\left(5x+1\right)\left(x-1\right)=0< =>\orbr{\begin{cases}5x+1=0\\x-1=0\end{cases}}\)

\(< =>\orbr{\begin{cases}5x=-1\\x=1\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=1\end{cases}}}\)

\(d,\left(3x-4\right)^2-\left(x+1\right)^2=0\)

\(< =>9x^2-24x+16-x^2-2x-1=0\)

\(< =>8x^2-26x+15=0< =>8\left(x^2-\frac{13}{4}x+\frac{169}{64}\right)-\frac{2082}{64}=0\)

\(< =>\left(x-\frac{13}{8}\right)^2=\frac{2082}{512}=\frac{2082}{16\sqrt{2}}\)

\(< =>\orbr{\begin{cases}x-\frac{13}{8}=\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x-\frac{13}{8}=-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{13}{8}+\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x=\frac{13}{8}-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)(nghiệm vô tỉ)