K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

vi (x-5)^2=(5-x)^2

nen 4x^2(x-5)-(5-x)^2=(x-5).(4x^2-x+5)=0

nen x-5=0 hoac 4x^2-x+5=0

neu x-5=0thix=5

neu 4x^2-x+5=0 thi  x(4x-1)=-5

cau tu lam not nhye ]

k cho to nha

25 tháng 11 2016

T bt làm  r nhưng đag vướng cái đoạn x(4x-1) =-5 í làm kiểu j -.-

12 tháng 7 2017

       x2-4x+4=4x2-12x+9

\(\Leftrightarrow\)3x2-8x+5=0

\(\Leftrightarrow\)3x2-3x-5x+5=0

\(\Leftrightarrow\)3x(x-1)-5(x-1)=0

\(\Leftrightarrow\)(x-1)(3x-5)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)

b,x2-2x-25=0

\(\Leftrightarrow\)(x-1)2-26=0

\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)

2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4

b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017

mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory

12 tháng 7 2017

Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3 

13 tháng 7 2017

Bài 1: 

a)  \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)

\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)

VẬy tập nghiệm của phương trình là : S={11/3 ; 7}

b)   Nếu x^2 -2x  =25 thì lẻ lắm . Tớ nghĩ phải là :  x^2 -2x  = 24 

Bài 2 : 

a)  \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)  hay \(A\ge4\)

Vậy GTNN của A là 4  khi x = 1        ( hay x-1 =0 )

b)  \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)

Vì \(\left(2x-1\right)^2\ge0\)     và \(\left(y+1\right)^2\ge0\)   nên   \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)

HAy \(B\ge-2017\)    Vậy GTNN của B là -2017  khi x=1/2   và y =  -1

6 tháng 6 2016

a, \(x^2-25-\left(x+5\right)=0\)

\(\Rightarrow x^2-5^2-\left(x+5\right)=0\)

\(\Rightarrow\left(x-5\right)\times\left(x+5\right)-\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\times\left(x-5-1\right)=0\)

\(\Rightarrow\left(x+5\right)\times\left(x-6\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+5=0\\x-6=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0-5=\left(-5\right)\\x=0+6=6\end{cases}}\)

b, \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Rightarrow\left(2x-1\right)^2-\left(\left(2x\right)^2-1^2\right)=0\)

\(\Rightarrow\left(2x-1\right)^2-\left(2x-1\right)\times\left(2x+1\right)=0\)

\(\Rightarrow\left(2x-1\right)\times\left(2x-1-\left(2x+1\right)\right)=0\)

\(\Rightarrow\left(2x-1\right)\times\left(2x-1-2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)\times\left(-2\right)=0\)\(\Rightarrow\left(-4x\right)+2=0\)

\(\Rightarrow\left(-4x\right)=0-2=-2\)

\(\Rightarrow x=\frac{-2}{-4}=\frac{1}{2}\)

c, \(x^2\times\left(x^2+4\right)-x^2-4=0\)

\(\Rightarrow x^2\times\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Rightarrow\left(x^2-1\right)\times\left(x^2+4\right)=0\)

\(\Rightarrow\hept{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2=1\\x^2=\left(-4\right)\end{cases}}\)

\(\Rightarrow x=1\)

27 tháng 9 2021

cảm ơn xong chẳng có ai :)))

15 tháng 7 2017

a,=(x\(^2\)-6x+9)+10-9

=(x-3)\(^2\)+1

Mà(x-3)\(^2\)\(\ge\)0

nên (x-3)\(^2\)+1>0

b,=  -(-4x+x\(^2\))-5

=    -(4-4x+x\(^2\))-5+4

=     -(2-x)\(^2\)-1

Mà  -(2-x)\(^2\)\(\le\)0

nên -(2-x)\(^2\)-1<   0

16 tháng 7 2017

Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :)  Thankssssss 

12 tháng 11 2021

x=-6/19 (^-^)b

18 tháng 8 2017

Bài 1 :

a, \(A=x\left(x-6\right)+10\)

=x^2 - 6x + 10

=x^2 - 2.3x+9+1

=(x-3)^2 +1 >0 Với mọi x dương

18 tháng 8 2017

Cảm ơn bạn Vũ Anh Quân ;) ;) ;) 

26 tháng 11 2016

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)  

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24=0\) 

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt: \(t=x^2+5x+5\) 

\(\Rightarrow\hept{\begin{cases}x^2+5x+4=t-1\\x^2+5x+6=t+1\end{cases}}\) 

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(t-1\right)\left(t+1\right)-24=0\) 

\(\Leftrightarrow t^2-25=0\) 

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\) 

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\) 

\(\Leftrightarrow x\left(x+5\right)\left(x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}\right)=0\) 

\(\Leftrightarrow x\left(x+5\right)\left[\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\right]=0\) 

Mà: \(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\) 

\(\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

26 tháng 11 2016

x thuộc rỗng