Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
bài này áp dụng tính chất của dãy tỉ số bằng nhau là được nha bạn!
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x-1}{5}=\frac{5y-2}{7}=\frac{3x+5y-3}{4x}=\frac{\left(3x-1\right)+\left(5y-2\right)}{5+7}=\frac{3x+5y-3}{12}.\)
\(\frac{3x+5y-3}{4x}=\frac{3x+5y-3}{12}\Rightarrow4x=12\Rightarrow x=3\)
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
a) Vì \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)
Vì \(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Mà \(3x-7y+5z=30\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\\\dfrac{y}{14}=2\\\dfrac{z}{10}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\).
b) Cách làm giống y hệt câu a nhé! Không khác đâu vì \(3x-7y+5z=3x+5z-7y\), nó chỉ đổi đổi vị trí các số hạng thoy.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(3x=y\)=> \(\frac{x}{1}=\frac{y}{3}\)
hay \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{y}{12}=\frac{z}{15}\)
suy ra: \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
đến đây bạn ADTCDTSBN nhé
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}=\)
\(\frac{3xz-2yz}{37z}=\frac{5yx-3zx}{15x}=\frac{2zy-5xy}{2y}=\frac{3xz-2yz+5yx-3zx+2zy-5xy}{37z+15x+2y}=0\)(t/c dãy tỉ số bằng nhau)
\(\frac{3x-2y}{37}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{5y-3z}{15}=0\Rightarrow5y=3z\Rightarrow\frac{z}{5}=\frac{y}{3}\left(2\right)\)
\(\frac{2z-5x}{2}=0\Rightarrow2z=5x\Rightarrow\frac{x}{2}=\frac{z}{5}\left(3\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=\frac{-4}{1}=-4\)
\(x=-8,y=-12,z=-20\)
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
Ta có : \(3x=5y;\frac{x}{5}=\frac{y}{3}\)
và \(3x+5y=30\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{3};\frac{3x+5y}{3.5+5.3}=\frac{30}{30}=1\)
\(\Leftrightarrow\begin{cases}x=1.5=5\\y=1.3=3\end{cases}\)
Vậy \(x=3;y=5\)
Theo đề bài, ta có:
\(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}\) và 3x+5y=30
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{3}=\frac{3x+5y}{3.5+5.3}=\frac{30}{30}=1\)
Vậy x=5 và y=3
^...^ ^_^