Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-3x+4\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
b) \(x^2-5x+8\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{7}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}>0\forall x\)
c) \(x^2+y^2+2x-4x-4y+5\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+1\)
\(=\left(x+y-2\right)^2+1>0\forall x\)
\(<=>x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+\frac{3}{4}>0\)
\(<=>x\left(x-1\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
\(<=>\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
\(<=>\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
Nhận xét:
\(\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)\ge0\left(1\right)\)
\(\left(x^4+x^2+1\right)\ge1=>-\frac{1}{4}\left(x^4+x^2+1\right)\ge-\frac{1}{4}\)
\(=>-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}\ge\frac{1}{2}\left(2\right)\)
Từ 1 và 2 => Tổng > 0 => ĐPCM
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
\(VT=\frac{x^{10}+x^5+1}{x^2+x+1}=\frac{\left(x^5+\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}>0\)
Nguồn: diendantoanhoc.net
P/s. Bài này không làm theo kiểu xét từng khoảng được, có lẽ từ đầu người ra đề đã nghĩ theo hướng ở trên. Nếu xét từng khoảng thì khá khó ở khoảng \(\left(-1;0\right)\)