Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^x+3^{x+1}+3^{x+2}=117\)
\(\Leftrightarrow3^x+3^x.3^1+3^x.3^2=117\)
\(\Leftrightarrow3^x\left(1+3+3^2\right)=117\)
\(\Leftrightarrow3^x.13=117\)
\(\Leftrightarrow3^x=9=3^2\)
\(\Leftrightarrow x=2\)
\(3^x+3^{x-1}+3^{x-2}=117\)
\(\Leftrightarrow3^x+\frac{3^x}{3}+\frac{3^x}{3^2}=117\)
\(\Leftrightarrow3^x.\left(1+\frac{1}{3}+\frac{1}{9}\right)=117\)
\(\Leftrightarrow3^x.\frac{13}{9}=117\)
\(\Leftrightarrow3^x=81\)
\(\Leftrightarrow3^x=3^4\)
\(\Leftrightarrow x=4\)
~Học tốt~
a)
\(\Rightarrow3^x\left(3^2+3+1\right)=117\)
\(\Rightarrow3^x.13=117\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^2\)
=>x=2
b)
\(3^{2x+1}=3^{-4}\)
=> 2x+1= - 4
=>\(x=-\frac{5}{2}\)
c)
\(\left(x+2\right)^4=16\)
\(\Rightarrow\left[\begin{array}{nghiempt}\left(x+2\right)^4=2^4\\\left(x+2\right)^4=\left(-2\right)^4\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=2\\x+2=-2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\-4\end{array}\right.\)
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
Hằng đẳng thức đó bn:
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay vào thì: \(-\left(x-3\right)\left(x^2-3x+9\right)=-\left[\left(x-3\right)\left(x^2-3x+3^2\right)\right]\)
\(=-\left(x^3-27\right)=-x^3+27\)
Bài làm:
Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow6x^2+41x-51=0\)
\(\Leftrightarrow6\left(x^2+\frac{41}{6}x+\frac{1681}{144}\right)-\frac{2905}{24}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}\right)^2-\frac{\left(\sqrt{2905}\right)^2}{12^2}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}-\frac{\sqrt{2905}}{12}\right)\left(x+\frac{41}{12}+\frac{\sqrt{2905}}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2905}-41}{12}\\x=\frac{-\sqrt{2905}-41}{12}\end{cases}}\)
3x+3x+1+3x+2=117
=> 3x.(1+3+32)=117
=> 3x.(1+3+9)=117
=> 3x.13=117
=> 3x=117:13
=> 3x=9
=> 3x=32
=> x=2
3x+3x+1+3x+2=117
=> 3x.(1+3+32)=117
=> 3x.(1+3+9)=117
=> 3x.13=117
=> 3x=117:13
=> 3x=9
=> 3x=32
=> x= 2
tick nha