Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
3(4x-5)^2-8x+10=0
Giải em theo cách tách đa thức = nhân tự vd 8x+10 là 2.(4x+5)
Giúp em vs please
\(3\left(4x-5\right)^2-8x+10=0\)
\(\Leftrightarrow\)\(3\left(4x-5\right)\left(4x-5\right)-2\left(4x-5\right)=0\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left[2\left(4x-5\right)-2\right]=0\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(8x-10-2\right)=0\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(8x-12\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-5=0\\8x-12=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{4}\\x=1,5\end{cases}}\)
Vậy...
\(a,3x\left(x-4\right)-2x+8=0\)
\(\Rightarrow3x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\4\end{cases}}}\)
Vậy \(x=\frac{2}{3}\)hoặc \(x=4\)
\(b,\left(3x-1\right)^2-\left(3x+2\right)\left(3x+1\right)=2\)
\(\Rightarrow9x^2-6x+1-\left(9x^2+3x+6x+1\right)-2=0\)
\(\Rightarrow9x^2-6x+1-9x^2-3x-6x-1-2=0\)
\(\Rightarrow-15x-2=0\)
\(\Rightarrow-15x=2\)
\(\Rightarrow x=\frac{-2}{15}\)
a, 4x^2 - 4x = -1
\(\Leftrightarrow\)4x^2 - 4x + 1 = 0
\(\Leftrightarrow\)(2x-1)2 =0
\(\Leftrightarrow\)2x - 1 = 0
\(\Leftrightarrow\)x = 1/2
b, \(\Leftrightarrow\)( 2x + 1)^3 = 0
\(\Leftrightarrow\)2x + 1 = 0
\(\Leftrightarrow\)x = -1/2
đúng thì
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
b) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
a) ( 5 - 2x )( 2x + 7 ) - 4x2 + 25 = 0
<=> ( 5 - 2x )( 2x + 7 ) + ( 5 - 2x )( 5 + 2x ) = 0
<=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0
<=> ( 5 - 2x )( 4x + 12 ) = 0
<=> \(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
b) ( 5x2 + 3x - 2 )2 - ( 4x2 - x - 5 )2 = 0 ( như này chứ nhỉ ? )
<=> [ ( 5x2 + 3x - 2 ) - ( 4x2 - x - 5 ) ][ ( 5x2 + 3x - 2 ) + ( 4x2 - x - 5 ) ] = 0
<=> ( 5x2 + 3x - 2 - 4x2 + x + 5 )( 5x2 + 3x - 2 + 4x2 - x - 5 ) = 0
<=> ( x2 + 4x + 3 )( 9x2 + 2x - 7 ) = 0
<=> ( x2 + x + 3x + 3 )( 9x2 + 9x - 7x - 7 ) = 0
<=> [ x( x + 1 ) + 3( x + 1 ) ][ 9x( x + 1 ) - 7( x + 1 ) ] = 0
<=> ( x + 1 )( x + 3 )( x + 1 )( 9x - 7 ) = 0
<=> ( x + 1 )2( x + 3 )( 9x - 7 ) = 0
<=> x + 1 = 0 hoặc x + 3 = 0 hoặc 9x - 7 = 0
<=> x = -1 hoặc x = -3 hoặc x = 7/9
c) 15x4 - 8x3 - 14x2 - 8x + 15 = 0
<=> 15x4 + 22x3 - 30x3 + 15x2 + 15x2 - 44x2 - 30x + 22x + 15 = 0
<=> ( 15x4 + 22x3 + 15x2 ) - ( 30x3 + 44x2 + 30x ) + ( 15x2 + 22x + 15 ) = 0
<=> x2( 15x2 + 22x + 15 ) - 2x( 15x2 + 22x + 15 ) + ( 15x2 + 22x + 15 ) = 0
<=> ( 15x2 + 22x + 15 )( x2 - 2x + 1 ) = 0
<=> ( 15x2 + 22x + 15 )( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}15x^2+22x+15=0\\\left(x-1\right)^2=0\end{cases}}\)
+) ( x - 1 )2 = 0 <=> x = 1
+) 15x2 + 22x + 15 = 15( x2 + 22/15x + 121/225 ) + 104/15 = 15( x + 11/25 )2 + 104/15 ≥ 104/15 > 0 ∀ x
Vậy phương trình có nghiệm duy nhất là x = 1
( 4x - 5 ) 2 - 2( 4x - 5 ) = 0
<=> ( 4x - 5 ) ( 4x - 5 - 2 ) = 0
<=> ( 4x - 5 ) ( 4x - 7 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\4x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{7}{4}\end{cases}}}\)
(4x-5)2 - 8x + 10 = 0
(4x-5)2 - 2.(4x-5) = 0
(4x-5).(4x-5 -2) = 0
(4x-5).(4x-7) = 0
=> 4x-5 = 0 => 4x = 5 => x = 5/4
4x-7 = 0 => 4x = 7 => x = 7/4
KL:...
\(2\left(x+3\right)-x^2-3x=0\)
<=> \(2\left(x+3\right)-x\left(x+3\right)=0\)
<=> \(\left(x+3\right)\left(2-x\right)=0\)
<=> \(\orbr{\begin{cases}x+3=0\\2-x=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
\(2x\left(3x-5\right)=10-6x\)
<=> \(2x\left(3x-5\right)-\left(10-6x\right)=0\)
<=> \(2x\left(3x-5\right)-2\left(5-3x\right)=0\)
<=> \(2x\left(3x-5\right)+2\left(3x-5\right)=0\)
<=> \(2\left(3x-5\right)\left(x+1\right)=0\)
<=> \(\orbr{\begin{cases}3x-5=0\\x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
\(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\)\(2x+6-x^2-3x=0\)
\(\Leftrightarrow\)\(-x^2-x+6=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy....
\(2x\left(3x-5\right)=10-6x\)
\(\Leftrightarrow\)\(6x^2-10x=10-6x\)
\(\Leftrightarrow\)\(6x^2-4x-10=0\)
\(\Leftrightarrow\)\(2\left(x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\3x-5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
Vậy....
\(x\left(3x-5\right)-9x+15=0\)
\(\Leftrightarrow x\left(3x-5\right)-3\left(3x-5\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\3x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{5}{3}\end{cases}}\)
\(3x\left(x-5\right)-2\left(5-x\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=5\end{cases}}\)
\(3\left(4x-5\right)^2-8x+10=0\)
<=> \(3\left(16x^2-40x+25\right)-8x+10=0\)
<=> \(48x^2-120x+75-8x+10=0\)
<=> \(48x^2-128x+85=0\)
<=> \(48x^2-68x-60x-85=0\)
<=> \(48x\left(x-\frac{17}{12}\right)-60\left(x-\frac{17}{12}\right)=0\)
<=> \(\left(48x-60\right)\left(x-\frac{17}{12}\right)=0\)
<=> \(\hept{\begin{cases}48x-60=0\\x-\frac{17}{12}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{4}\\x=\frac{17}{12}\end{cases}}\)