Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. |x - 2| = x
=> x - 2 = x hoặc x - 2 = -x
=> x - x = 2 hoặc x + x = 2
=> 0x = 2 (loại) hoặc 2x = 2
=> x = 1
Vậy x = 1.
b. |x - 3,4| + |2,6 - x| = 0
Mà |x - 3,4| > 0; |2,6 - x| > 0
=> |x - 3,4| = 0 và |2,6 - x| = 0
=> x - 3,4 = 0 và 2,6 - x = 0
=> x = 3,4 và x = 2,6 (vô lí vì x chỉ có 1 giá trị)
Vậy không có x thỏa.
c. (x + 5)3 = -64
=> (x + 5)3 = (-4)3
=> x + 5 = -4
=> x = -4 - 5
=> x = -9
Vậy x = -9.
d. (2x - 3)2 = 9
=> (2x - 3)2 = 32 = (-3)2
=> 2x - 3 = 3 hoặc 2x - 3 = -3
=> 2x = 6 hoặc 2x = 0
=> x = 3 hoặc x = 0
Vậy x = 0 hoặc x = 3.
a, Ix-2I=x
suy ra :x-2=x hoặc x-2=-x
+Nếu x-2=x
x-x=2 suy ra 0x=2 (loại)
+Nếu x-2=-x
x-(-x)=2
x+x=2
2x=2 suy ra x=2:2=x
Vậy x=1
b, vì Ix+3,4I+I2,6-xI=0 mà 2 số hạng của tổng đều lớn hơn hoặc bằng 0
suy ra x+3,4=2,6-x=0
vơí x+3,4=0 thì x=-3,4 (1)
với 2,6-x=0 thì x=2,6 (2)
từ (1) và (2) suy ra x cos 2 giá trị
vậy không tìm được x
c, (x+5)^3=-64
(x+5)^3=(-4)^3
x+5=-4
x=-9
vậy x=-9
d,
x=0 hoặc x=3
\(D=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=2+\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow x\in\left\{-4;2;4;10\right\}\)
D= \(\frac{2x+1}{x-3}=2+\frac{7}{x-3}\)
để D dương thì x-3 là uocs của 7=(-1,1,-7,7)
xét từng TH:
x-3=-1=> x=2
x-3=1=>x=4
x-3=-7=>x=-4
x-3=7=>x=10
các giá trị x là 2,4,-4,10
a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)
b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)
\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)
Dấu "=" xảy ra khi:
\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)
Bài 1:
a: f(0)=1
f(2)=-3x2+1=-6+1=-5
f(-2)=-3x2+1=-5
f(-1/2)=-3x1/2+1=-3/2+1=-1/2
b: f(x)=-3
=>-3|x|+1=-3
=>-3|x|=-4
=>|x|=4/3
=>x=4/3 hoặc x=-4/3