K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

2x( x + 1 ) - 5x - 10 = 0

<=> 2x2 + 2x - 5x - 10 = 0

<=> 2x2 - 3x - 10 = 0

<=> 2( x2 - 3/2x + 9/16 ) - 89/8 = 0

<=> 2( x - 3/4 )2 = 89/8

<=> ( x - 3/4 )2 = 89/16

<=> \(\left(x-\frac{3}{4}\right)^2=\left(\pm\sqrt{\frac{89}{16}}\right)^2=\left(\pm\frac{\sqrt{89}}{4}\right)^2\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{\sqrt{89}}{4}\\x-\frac{3}{4}=-\frac{\sqrt{89}}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{89}}{4}\\x=\frac{3-\sqrt{89}}{4}\end{cases}}\)

25 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=0\Leftrightarrow x^3+4x^2-5x=0\)
\(\Leftrightarrow\)x=0 ( ko tm đkxđ) hoặc x=1(tm đkxđ) hoặc x=-5(ktmdkxd)=> x=1
c)\(P=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
P>0 => x>1
P<0=> x<1
Chúc bạn học tốt :)

a,Tìm ĐKXĐ

\(2x+10\ne0\Rightarrow2\left(x+5\right)\ne0\Rightarrow x\ne-5\)

\(x\ne0\)

\(2x\left(x+5\right)\ne0\Rightarrow x\ne0;x\ne-5\)

22 tháng 9 2020

a) ( x - 1 )2 - ( x - 1 )( x + 1 ) = 0

<=> x2 - 2x + 1 - ( x2 - 1 ) = 0

<=> x2 - 2x + 1 - x2 + 1 = 0

<=> 2 - 2x = 0

<=> 2x = 2 

<=> x = 1

b) ( 2x - 1 )2 - ( 2x + 1 )2 = 0

<=> [ ( 2x - 1 ) - ( 2x + 1 ) ][ ( 2x - 1 ) + ( 2x + 1 ) ] = 0

<=> ( 2x - 1 - 2x - 1 )( 2x - 1 + 2x + 1 ) = 0

<=> -2.4x = 0

<=> -8x = 0

<=> x = 0

c) 25( x + 3 )2 + ( 1 - 5x )( 1 + 5x ) = 8

<=> 52( x + 3 )2 + 12 - 25x2 = 8

<=> [ 5( x + 3 ) ]2 + 1 - 25x2 = 8

<=> ( 5x + 15 )2 + 1 - 25x2 = 8

<=> 25x2 + 150x + 225 + 1 - 25x2 = 8

<=> 150x + 226 = 8

<=> 150x = -218

<=> x = -218/150 = -109/75

d) 9( x + 1 )2 - ( 3x - 2 )( 3x + 2 ) = 10

<=> 32( x + 1 )2 - ( 9x2 - 4 ) = 10

<=> [ 3( x + 1 ) ]2 - 9x2 + 4 = 10

<=> ( 3x + 3 )2 - 9x2 + 4 = 10

<=> 9x2 + 18x + 9 - 9x2 + 4 = 10

<=> 18x + 13 = 10

<=> 18x = -3

<=> x = -3/18 = -1/6

22 tháng 9 2020

a) (x - 1)2 - (x - 1)(x + 1) = 0

=> (x - 1)2 - (x2 - 12) = 0

=> x2 - 2.x.1 + 12 - x2 + 1 = 0

=> x2 - 2x + 1 - x2 + 1 = 0

=> -2x + 1 + 1 = 0

=> -2x + 2 = 0

=> -2x = -2 => x = 1

b) (2x - 1)2 - (2x + 1)2 = 0

=> (2x - 1 - 2x + 1)(2x - 1 + 2x + 1) = 0

=> 0 = 0(đúng)

c) 25(x + 3)2 + (1 - 5x)(1 + 5x) = 8

=> 25(x2 + 2.x.3 + 32) + (12 - (5x)2) = 8

=> 25x2 + 150x + 225 + 1 - 25x2 = 8

=> 150x +225 + 1 = 8

=> 150x = -218

=> x = -109/75

d) 9(x + 1)2 - (3x - 2)(3x + 2) = 10

=> 9(x2 + 2x + 1) - [(3x)2 - 2 ] = 10

=> 9x2 + 18x + 9 - (9x2 - 4) = 10

=> 9x2 + 18x + 9 - 9x2 + 4 = 10

=> 18x + 9 + 4 = 10

=> 18x = -3

=> x = -1/6

30 tháng 11 2016

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

30 tháng 11 2016

Cảm ơn

 

12 tháng 10 2017

Bài 3:

1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)

\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy.......................

2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

Vậy........................

3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy............................

4, 5 tương tự nhé bn!

12 tháng 10 2017

bài 3

1 (x-1)(x+2)+5x-5=0

=>(x-1)(x+2)+(5x-5)=o

=>(x-1)(x+2)+5(x-1)=0

=>(x-1)(x+2+5)=0

=>(x-1)(x+7)=0

=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

vậy x=1 hoặc x=-7

2. (3x+5)(x-3)-6x-10=0

=>(3x+5)(x-3)-(6x+10)=0

=>(3x+5)(x-3)-2(3x+5)=0

=>(3x+5)(x-3-2)=0

=>(3x+5)(x-5)=0

=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

12 tháng 3 2020

Bài 2:

(1 + x)3 + (1 - x)- 6x(x + 1) = 6

<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6

<=> -6x + 2 = 6

<=> -6x = 6 - 2

<=> -6x = 4

<=> x = -4/6 = -2/3

Bài 3: 

a) (7x - 2x)(2x - 1)(x + 3) = 0

<=> 10x3 + 25x2 - 15x = 0

<=> 5x(2x - 1)(x + 3) = 0

<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0

<=> x = 0 hoặc x = 1/2 hoặc x = -3

b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0

<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0

<=> -x2 + 9 = 0

<=> -x2 = -9

<=> x2 = 9

<=> x = +-3

c) (x + 4)(5x + 9) - x2 + 16 = 0

<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0

<=> 4x2 + 29x + 52 = 0

<=> 4x2 + 13x + 16x + 52 = 0

<=> 4x(x + 4) + 13(x + 4) = 0

<=> (4x + 13)(x + 4) = 0

<=> 4x + 13 = 0 hoặc x + 4 = 0

<=> x = -13/4 hoặc x = -4

12 tháng 3 2020

Lê Nhật Hằng cảm ơn bạn nha

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

12 tháng 9 2018

1 ) 2x2 -  5x + 4x - 10 = 0

=> 2x2 + 4x - 5x - 10 = 0

=> 2x ( x + 2 ) - 5. ( x + 2 ) = 0

=> ( x + 2 ) . ( 2x - 5 ) = 0

=> \(\orbr{\begin{cases}x+2=0\\2x-5=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)

Vậy \(x\in\left\{-2;\frac{5}{2}\right\}\)

2 ) x2 ( 2x - 3 ) + 3 - 2x = 0

=> x2 ( 2x - 3 ) - ( 2x - 3 ) = 0

=> ( 2x - 3 ) . ( x2 - 1 ) = 0

=> \(\orbr{\begin{cases}2x-3=0\\x^2-1=0\end{cases}}\)  

=> \(\orbr{\begin{cases}2x=3\\x^2=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=\pm1\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{2};\pm1\right\}\)

26 tháng 8 2020

a) 5x( x - 1 ) = x - 1

<=> 5x2 - 5x = x - 1

<=> 5x2 - 5x - x + 1 = 0

<=> 5x2 - 6x + 1 = 0

<=> 5x2 - 5x - x + 1 = 0

<=> 5x( x - 1 ) - 1( x - 1 ) = 0

<=> ( x - 1 )( 5x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

b) 2( x + 5 ) - x2 - 5x = 0

<=> 2x + 10 - x2 - 5x = 0

<=> -x2 - 3x + 10 = 0

<=> -x2 - 5x + 2x + 10 = 0

<=> -x( x + 5 ) + 2( x + 5 ) = 0

<=> ( x + 5 )( 2 - x ) = 0

<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

c) x2 - 2x - 3 = 0

<=> x2 + x - 3x - 3 = 0

<=> x( x + 1 ) - 3( x + 1 ) = 0

<=> ( x + 1 )( x - 3 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

d) 2x2 + 5x - 3 = 0

<=> 2x2 - x + 6x - 3 = 0

,<=> x( 2x - 1 ) + 3( 2x - 1 ) = 0

<=> ( 2x - 1 )( x + 3 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

26 tháng 8 2020

a) 5x ( x - 1 ) = x - 1 <=> 5x2 - 5x - x + 1 = 0

<=> 5x2 - 6x + 1 = 0 <=> 5x2 - x - ( 5x - 1 ) = 0 

<=> x ( 5x - 1 ) - ( 5x - 1 ) = 0 <=> ( x - 1 )( 5x - 1 ) = 0

<=> x = 1 hoặc x = 1/5

b) 2 ( x + 5 ) - x2 - 5x = 0 <=> 2 ( x + 5 ) - x ( x + 5 ) = 0

<=> ( 2 - x ) ( x + 5 ) = 0 <=> x = 2 hoặc x = -5

c) x2 - 2x - 3 = 0 <=> x2 + x - 3x - 3 = 0 

<=> x ( x + 1 ) - 3 ( x + 1 ) = 0 <=> ( x - 3 ) ( x + 1 ) = 0 

<=> x = 3 hoặc x = -1

d) 2x2  + 5x - 3 = 0

Ta có : delta = 52 - 4.2.3 = 25 - 24 = 1

Khi đó : x = -1 hoặc x = 3/2