![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ : \(x\ge0;x\ne1\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\frac{2}{x^2-2x+1}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\frac{2}{\left(x-1\right)^2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-1\right)}{2\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=-\sqrt{x}\left(x-1\right)\)
Vậy...
b/ Ta có :
\(P>0\)
\(\Leftrightarrow-\sqrt{x}\left(x-1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(x-1\right)< 0\)
Mà \(\sqrt{x}\ge0\)
\(\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ
Vậy \(0< x< 1\) thì P > 0
c/ Ta có :
\(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) thỏa mãn \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
Thay vào P rồi bạn tự tính ra nhé :>
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :ta có \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-\left(m^2-1\right)=1\)
vậy \(\Delta^'\)không phụ thuộc vào m hay phương trình luôn có nghiệm với mọi giá trị của m
Câu 2 :
có \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
để phương trình có hai nghiệm phân biệt thì : \(\Delta>0\Rightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
- phương trình có hai nghiệm nên ta có viet: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)theo giả thiết có : \(P=\left(x_1+x_2\right)^2-8x_1x_2\)thay viet vào phương trình có : \(P=m^2-8\left(m-1\right)=m^2-8m+8\)\(\Rightarrow P=8\Leftrightarrow m^2-8m=0\Leftrightarrow\hept{\begin{cases}m=0\\m=8\end{cases}}\)
- \(P=m^2-8m+8=m^2-8m+16-8=\left(m-4\right)^2-8\ge-8\)vậy nên \(P_{MIN}=-8\)Dấu "=" khi và chỉ khi \(m-4=0\Leftrightarrow m=4\)
để 2^x+4^x=8^x
thì x phải =1
hok tốt
2x+4x=8x
2x+22x=23x
2x+22x - 23x=0
2x (1+22- 23)=0
2x (-3)=0
Suy ra 2x=0 ( vô lí)
Vậy không có giá trị của x thỏa mãn đề bài