Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+1\right)^3=125\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
b) \(1999^{2x-6}=1\)
\(\Rightarrow1999^{2x-1}=1999^0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
c) \(x^{2002}=x\)
\(\Rightarrow x^{2002}-x=0\)
\(\Rightarrow x.\left(x^{2001}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^{2001}-1=0\)
+) \(x=0\)
+) \(x^{2001}-1=0\Rightarrow x^{2001}=1\Rightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)
d) \(\left(x-1\right)^2=9\)
\(\Rightarrow x-1=\pm3\)
+) \(x-1=3\Rightarrow x=4\)
+) \(x-1=-3\Rightarrow x=-2\)
Vậy \(x\in\left\{4;-2\right\}\)
e) \(\left(2x-3\right)^2=81\)
\(\Rightarrow2x-3=\pm9\)
+) \(2x-3=9\Rightarrow2x=12\Rightarrow x=6\)
+) \(2x-3=-9\Rightarrow2x=-6\Rightarrow x=-3\)
Vậy \(x\in\left\{6;-3\right\}\)
Các phần khác làm tương tự
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
\(a,2x-138=2^3:\left(-3\right)^2\)
\(\Rightarrow2x-138=8:9\)
\(\Rightarrow2x=\frac{8}{9}+138\)
\(\Rightarrow2x=\frac{1250}{9}\)
\(\Rightarrow x=\frac{626}{9}\)
\(10+2x=\left(-4\right)^5:\left(-4\right)^3\)
\(10+2x=-1024:\left(-64\right)\)
\(10+2x=16\)
\(2x=16-10\)
\(2x=6\)
\(x=6:2=3\)
a./ \(\Leftrightarrow x^{10}=1\Leftrightarrow x=\pm1\)
b./ \(\Leftrightarrow x^{10}-x=0\Leftrightarrow x\left(x^9-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^9=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c./ \(\Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\Leftrightarrow\left(2x-15\right)^3\left(\left(2x-15\right)^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
- 2x - 15 = 0 \(\Leftrightarrow x=\frac{15}{2}\)
- 2x - 15 = 1 \(\Leftrightarrow x=\frac{16}{2}=8\)
- 2x - 15 = -1 \(\Leftrightarrow x=\frac{14}{2}=7\)
Ta có 2x + 1 . 3y = 10x
=> 2x.3y.2 = 10x
=> 3y.2 = 5x
=> 3y.2 = (...5)
=> 3y = (...5) : 2
Vì 5y tận cùng là 5
=> 5y không chia hết cho 2
=> Không tồn tại x;y \(\inℕ\)thỏa mãn
=> \(x;y\in\varnothing\)
b) 10x : 5y = 20y
=> 10x = 4y
=> x = y = 0
c) (2x - 15)5 = (2x - 15)3
(2x - 15)5 - (2x - 15)3 = 0
=> (2x - 15)3[(2x - 15)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\Rightarrow2x-15\in\left\{0;1;-1\right\}\)
=> \(x\in\left\{7,5;8;7\right\}\)
Vì x là số tự nhiên => \(x\in\left\{7;8\right\}\)
a,5^x=125
=>5^x=5^3
=>x=3
b,3^2x=81
=>3^2x=3^4
=>2x=4
=>x=4:2=2
c,5^2x-3-2*5^2=5^2+3
5^2x-3-50=75
5^2x-3=75+50=125
5^2x-3=5^3
=>2x-3=3
=>2x=3+3=6
=>6:2=3
k cho mk nhé
\(a,125=5\cdot5\cdot5=5^3\Leftrightarrow x=3\)
\(b,81=3\cdot3\cdot3\cdot3=3^4\Leftrightarrow2x=4\Leftrightarrow x=4:2\Leftrightarrow x=2\)
\(c,5^{2x-3}-2\cdot5^2=5^2\cdot3\)
\(\Leftrightarrow5^{2x-3}=2\cdot5^2+5^2\cdot3\)
\(\Leftrightarrow5^{2x-3}=5^2\cdot\left(2+3\right)\)
\(\Leftrightarrow5^{2x-3}=5^2\cdot5\Leftrightarrow5^{2x-3}=5^3\)
\(\Leftrightarrow2x-3=3\Leftrightarrow2x=3+3\Leftrightarrow2x=6\Leftrightarrow x=6:2\Leftrightarrow x=3\)
a, ta có \(x+15⋮x+5,x+5⋮x+5\)
=>x+15-(x+5)\(⋮\)x+5
=>\(x+15-x-5⋮x+5\)
=>\(10⋮x+5\)
=>\(x+5\inƯ\left(10\right)\)=> \(x+5\in\left\{\pm1,\pm2,\pm5,\pm10\right\}\)
=>x\(\in\left\{-15,-10,-7,-6,-4,-3,0,5\right\}\)Mà x thuộc N
=> \(x\in\left\{0,5\right\}\)
Phần tiếp theo tương tự nha bn
Ta có 2x+9\(⋮x+2\)
\(x+2⋮x+2\Rightarrow2\left(x+2\right)⋮x+2\)
=> 2x+9-2(x+2)\(⋮x+2\)
=> 2x+9-2x-4\(⋮x+2\)
=>5\(⋮x+2\)
=>\(x+2\inƯ\left(5\right)\Rightarrow x+2\in\left\{\pm1,\pm5\right\}\)
=>\(x\in\left\{-7,-3,-2,3\right\}\)Mà \(x\inℕ\Rightarrow x=3\)
Vậy.........
Phần sau bn lm tương tự nhé
*****Chúc bạn học giỏi*****
Ta có: \(2x^3+x=51x\)
\(\Leftrightarrow2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
`2x^3+x=51x`
`->2x^2+x-51x=0`
`->2x^2-50x=0`
`->2x(x-25)=0`
`->`\(\left[\begin{array}{} 2x=0\\ x-25=0 \end{array} \right.\)
`->`\(\left[\begin{array}{} x=0\\ x=25 \end{array} \right.\)
Vậy `S={0;25}`