Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2x\left(x-3\right)+5x-15=0\)
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\left(2x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-5}{2}\end{matrix}\right.\)
2) \(x\left(2x-7\right)-4x+14=0\)
\(x\left(2x-7\right)-2\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)
3) \(x^2-12x+36=0\)
\(\left(x-6\right)^2=0\)
\(x-6=0\)
\(x=6\)
4) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)
\(\left(x^3+3^3\right)-x\left(x^2-1\right)-27=0\)
\(x^3+27-x^3+x-27=0\)
\(x=0\)
\(x^2-2x=24\)
<=> \(x^2-2x-24=0\)
<=> \( \left(x+4\right)\left(x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
Vậy....
\(a,\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)
\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)
\(\Leftrightarrow4\left(2+x\right)=0\)
\(\Leftrightarrow2+x=0\)
\(\Leftrightarrow x=-2\)
\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)
\(\Leftrightarrow2x+255=0\)
\(\Leftrightarrow x=-127,5\)
i)
$I=x^4+4x^3-x^2-14x+6$
$=(x^4+4x^4+4x^2)-5x^2-14x+6$
$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$
$=(x^2+2x-3)^2+(x^2-2x+1)-4$
$=(x-1)^2(x+3)^2+(x-1)^2-4$
$=(x-1)^2[(x+3)^2+1]-4\geq -4$
Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$
k)
$K=x^4+2x^3-10x^2-16x+45$
$=(x^4+2x^3+x^2)-11x^2-16x+45$
$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$
$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$
$=(x^2+x-6)^2+(x-2)^2+5$
$=[(x-2)(x+3)]^2+(x-2)^2+5$
$=(x-2)^2[(x+3)^2+1]+5\geq 5$
Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$
g)
$G=x^4+4x^3+10x^2+12x+11$
$=(x^4+4x^3+4x^2)+6x^2+12x+11$
$=(x^2+2x)^2+6(x^2+2x)+11$
Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$
$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$
Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$
h)
$H=x^4-6x^3+x^2+24x+18$
$=(x^4-6x^3+9x^2)-8x^2+24x+18$
$=(x^2-3x)^2-8(x^2-3x)+18$
$=(x^2-3x)^2-8(x^2-3x)+16+2$
$=(x^2-3x-4)^2+2\geq 2$
Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$
a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)
\(=x^3+14x^2+27x+51\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)
\(=8x^3+18-8x^3+18=36\)
c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)
\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)
\(=64x^5-1\)
d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)
\(=x^3-x^2+14\)
Chúc bạn học tốt!!!
a) 3x^3-12x=0
3x(x^2-4)=0
3x(x-2)(x+2)=0
suy ra 3x=0 suy ra x=0
x-2=0 x=2
x+2=0 x= -2
b) (x-3)^2-(x-3)(3-x)^2=0
(x-3)^2-(x-3)(x-3)^2=0
(x-3)^2(1-x+3)=0
(x-3)^2(4-x)=0
suy ra x-3=0 suy ra x=3
4-x=0 x=4
a) và b) đã nhé bạn
\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)
Vậy GTNN của A là -22 khi x = 5
\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = -3
\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)
\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)
Vậy GTNN của D là 16 khi x = 2; y = 0
\(E=x^2+2y^2-2xy+4x-6y+100\)
\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)
\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)
Vậy GTNN của E là 95 khi x = -1 ; y = 1
\(F=2x^2+y^2-2xy+4x+100\)
\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)
\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)
Vậy GTNN của F là 96 khi x = -2; y = -2
\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)
Vậy GTLN của A là 39 khi x = -6
\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)
Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)
\(a,\Leftrightarrow4x^2+4x+1-4x^2-12x=9\\ \Leftrightarrow-8x=8\Leftrightarrow x=-1\\ b,\Leftrightarrow\left(x-6\right)^2=0\Leftrightarrow x=6\)
b: \(\Leftrightarrow x^2-12x+36=0\)
hay x=6