Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:bạn dùng BĐT chứa dấu giá trị tđ
bài 2 làm lần lượt là ok
Bài 1:
a)|x-1/4| + |x-3/4|
Áp dụng BĐT |a|+|b|>=|a+b| ta có:
\(\left|x-\frac{1}{4}\right|+\left|x-\frac{3}{4}\right|\ge\left|x-\frac{1}{4}+\frac{3}{4}-x\right|=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\)
Dấu "=" <=>x=1/4 hoặc 3/4
Vậy Amin=1/2 <=>x=1/4 hoặc 3/4
b)|x-1|+|x-2|+|x-5|
Bạn xét từng TH ra
Bài 2:
bn tự lm nhé bài này dễ ẹc mà
Ta có : \(\left|x+\frac{2}{3}\right|=\frac{3}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{3}{5}\\x+\frac{2}{3}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{2}{3}\\x=-\frac{3}{5}-\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{15}\\x=-\frac{19}{15}\end{cases}}\)
/x/+2/3=3/5 hoặc /x/+2/3=-3/5
x=3/5-2/3 x=-3/5-2/3
x=-1/15 x=-19/15
/x/-2,8=1/5 hoặc /x/-2,8=-1/5
x=1/5+2,8 x=-1/5+2,8
x=3 x=13/5
/x/+1/2+3=0
x+7/2=0
x=0-7/2
x=-7/2
/2x/-3/8=0
2x=0+3/8
2x=3/8
x=3/8:2
x=3/16
a, Để A có giá trị âm => 2x - 8 < 0 => 2x < 8 => x < 4
b, Để B có giá trị không dương => 6 - x < 0 => x > 6
c, Để C có giá trị âm:
Th1: \(\hept{\begin{cases}x-2>0\\2x+6< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\2x< -6\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< -3\end{cases}}\) (vô lý)
Th2: \(\hept{\begin{cases}x-2< 0\\2x+6>0\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\2x>-6\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>-3\end{cases}\Rightarrow}-3< x< 2\)
d, Ta có: 3x2 + 9x = 3x(x + 3)
Để D có giá trị dương:
Th1: \(\hept{\begin{cases}3x>0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x>-3\end{cases}}\Rightarrow x>0\)
Th2: \(\hept{\begin{cases}3x< 0\\x+3< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0\\x< -3\end{cases}\Rightarrow}x< -3\)
e, Đk: x ≠ 0
Để E có giá trị âm
Th1: \(\hept{\begin{cases}x-2>0\\x< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< 0\end{cases}}\)(vô lý)
Th2: \(\hept{\begin{cases}x-2< 0\\x>0\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>0\end{cases}\Rightarrow}0< x< 2\)
f, Để F mang giá trị dương:
Th1: \(\hept{\begin{cases}2x-5>0\\x-4>0\end{cases}\Rightarrow}\hept{\begin{cases}2x>5\\x>4\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{5}{2}=2,5\\x>4\end{cases}\Rightarrow}x>4\)
Th2: \(\hept{\begin{cases}2x-5< 0\\x-4< 0\end{cases}\Rightarrow}\hept{\begin{cases}2x< 5\\x< 4\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{5}{2}=2,5\\x< 4\end{cases}\Rightarrow}x< 2,5\)
g, Để G có giá trị không âm
Th1: \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}}\Rightarrow-1< x< 3\)
Th2: \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< -1\\x>3\end{cases}}\)(vô lý)
Tìm x , biết :
1 , | x + 2 | - | x + 1 | = 0
2 , | x + 1 | + | x + 4 | = 3x
3 , | 2x - 1 | \(\le\)5