Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2+\left|2y-x\right|=0\)
có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|2y-x\right|\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}}\)
vậy_
a) | 2x - 1 | = 1- 3x
\(\orbr{\begin{cases}2x-1=1-3x\\2x-1=-\left(1-3x\right)\end{cases}}\)
\(\orbr{\begin{cases}2x-3x=1+1\\2x-1=-1+3x\end{cases}}\)
\(\orbr{\begin{cases}-x=2\\2x+3x=-1+1\end{cases}}\)
\(\orbr{\begin{cases}x=-2\\5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)
b) | 1 - 2x | = x + 1
\(\orbr{\begin{cases}1-2x=x+1\\1-2x=-\left(x+1\right)\end{cases}}\)
\(\orbr{\begin{cases}-2x-x=1-1\\-2x+x=-1-1\end{cases}}\)
\(\orbr{\begin{cases}-3x=0\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
tương tự
Có : |x-2| và |y+5| đều >= 0
=> A >= 0+0+2 = 2
Dấu "=" xảy ra <=> x-2=0 và y+5=0 <=> x=2 và y=-5
Vậy GTNN của A = 2 <=> x=2 và y=-5
Tk mk nha
ta có /2-x/-2=0
<=> /2-x/=2
<=>\(\orbr{\begin{cases}2-x=2\\2-x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2-2\\x=2-\left(-2\right)\end{cases}\orbr{\begin{cases}x=0\\x=4\end{cases}}}}\)
Vậy x=0 ; 4
| 2 - x | - 2 = 0
| 2 - x | = 0 + 2
| 2 - x | = 2
|2 - x | = 2 <=> | 2 - x | = -2
x = 2 - 2 x = 2 - (-2)
x = 0 x = 4
Vậy ...