Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x-8)(x3+8)=0
<=>x-8=0 hoặc x3+8=0
<=>x=8 hoặc x3=-8
<=>x=8 hoặc x=-2
b)(4x-3)-(x+5)=3(10-x)
<=>4x-3-x-5=30-3x
<=>(4x-x)+(-3-5)=30-3x
<=>3x-8=30-3x
<=>6x=38
<=>x=\(\frac{38}{6}=\frac{19}{3}\)
Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0
a) => x - 8 = 0 hoặc x3 + 8 = 0
+) x - 8 = 0 => x = 8
+) x3 + 8 = 0 => x3 = - 8 = (-2)3 => x = -2
Vậy x = 8; -2
b) => 4x - 3 - x - 5 = 30 - 3x
=> 3x - 8 = 30 - 3x
=> 3x + 3x = 30 + 8
=> 6x = 38 => x = 38/6 = 19/3
Vậy x = 19/3
a) => x - 8 = 0 hoặc x3 + 8 = 0
+) x - 8 = 0 => x = 8
+) x3 + 8 = 0 => x3 = - 8 = (-2)3 => x = -2
Vậy x = 8; -2
b) => 4x - 3 - x - 5 = 30 - 3x
=> 3x - 8 = 30 - 3x
=> 3x + 3x = 30 + 8
=> 6x = 38 => x = 38/6 = 19/3
Vậy x = 19/3
a) \(\left(x-8\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x^2+8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=8\\x^2=-8\left(loai\right)\end{cases}}\)
Vậy x=8
b) \(\left(4x-3\right)-\left(x+5\right)=3.\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\frac{19}{3}\)
Vaayjh\ ...
a)( x - 8 ).( x3 + 8 ) =0
=>x-8=0 hoặc x3+8=0
=>x=8 hoặc x=-2
b)( 4x - 3 ) - ( x + 5) = 3.(10 - x)
<=>3x-8=-3(x-10)
=>3x-8=30-3x
=>6x=38
=>x=\(\frac{19}{3}\)
\(\left(\frac{x-10}{30}-3\right)+\left(\frac{x-14}{43}-2\right)+\left(\frac{x-5}{95}-1\right)+\left(\frac{x-148}{8}+6\right)=0\)
\(\Leftrightarrow\left(\frac{x-10}{30}-\frac{90}{30}\right)+\left(\frac{x-14}{43}-\frac{86}{43}\right)+\left(\frac{x-5}{95}-\frac{95}{95}\right)+\left(\frac{x-148}{8}+\frac{48}{8}\right)=0\)
\(\Leftrightarrow\frac{x-100}{30}+\frac{x-100}{43}+\frac{x-100}{95}+\frac{x-100}{8}=0\)
\(\Leftrightarrow\left(x-100\right).\left(\frac{1}{30}+\frac{1}{43}+\frac{1}{95}+\frac{1}{8}\right)=0\)
\(\Rightarrow x-100=0\)( Do \(\frac{1}{30}+\frac{1}{43}+\frac{1}{95}+\frac{1}{8}\ne0\)
=> x=100
\(\frac{8^{10}+4^{10}}{8^{11}+4^{11}}=\frac{2^{30}+2^{20}}{2^{33}+2^{22}}=\frac{2^{20}.\left(2^{10}+1\right)}{2^{20}.\left(2^{13}+2^2\right)}=\frac{2^{10}+1}{2^{13}+4}=\frac{1025}{8196}\)
\(a,\left(x+2\right)^{10}+\left(x+2\right)^8=0\\ \Leftrightarrow\left(x+2\right)^8\left[\left(x+2\right)^2+1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^8=0\\\left(x+2\right)^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x+2\right)^2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\end{matrix}\right.\\ b,\left(x+3\right)^{10}-\left(x+3\right)^8=0\\ \Leftrightarrow\left(x+3\right)^8\left[\left(x+3\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^8=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x+3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x+3=1\\x+3=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\\x=-4\end{matrix}\right.\)
Do \(\left|10-x\right|,\left|8-x\right|\ge0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}10-x=0\\8-x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10\\x=8\end{matrix}\right.\)(Vô lý)
Vậy \(S=\varnothing\)