Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
a, \(\left|x-\frac{2}{3}\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{1}{2}\\x-\frac{2}{3}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}+\frac{2}{3}\\x=\frac{2}{3}-\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{1}{6}\end{cases}}}\)
b, \(\left|x+\frac{7}{20}\right|=\frac{3}{15}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{7}{20}=\frac{1}{5}\\x+\frac{7}{20}=-\frac{1}{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}-\frac{7}{20}\\x=-\frac{1}{5}-\frac{7}{20}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-3}{20}\\x=\frac{-11}{20}\end{cases}}}\)
c, \(\left|3x+2\right|=\left|7x-4\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=7-4x\\3x+2=4x-7\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=5\\x=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{7}\\x=9\end{cases}}}\)
d, \(\left|5-2x\right|=\left|2x-5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=2x-5\\5-2x=5-2x\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\0x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x\in Q\end{cases}}}\)
=> Có vô số x thỏa mãn \(\left|5-2x\right|=\left|2x-5\right|\)
e, \(\left|-5-6x\right|=\left|-x-5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}-5-6x=-x-5\\-5-6x=x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}-5x=0\\-7x=10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{10}{7}\end{cases}}}\)
f, \(\left|-x+5\right|=\left|12-3x\right|\) đúng ko ???
\(\Leftrightarrow\orbr{\begin{cases}-x-5=12-3x\\-x+5=3x-12\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\-4x=17\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{17}{4}\end{cases}}}\)
a) \(A\left(x\right)=-4x^5-x^3+4x^2+5x+7+4x^5-6x^2\)
\(=\left(-4x^5+4x^5\right)+\left(-x^3\right)+\left(4x^2-6x^2\right)+5x+7\)
\(=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=-3x^4-4x^3+10x^2-8x+5x^3-7-8x\)
\(=-3x^4+\left(-4x^3+5x^3\right)+10x^2+\left[-8x+\left(-8x\right)\right]+\left(-7\right)\)
\(=-3x^4+x^3+10x^2+\left(-16x\right)+\left(-7\right)\)
b) \(A\left(x\right)=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=x^3+10x^2+\left(-16x\right)+\left(-7\right)+\left(-3x^4\right)\)
\(P\left(x\right)=A\left(x\right)+B\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)\)
\(Q\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-2x^3\right)+\left(-12x^2\right)+21x+14\)
c) Đặt \(P\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)=0\)
Thay x=-1 vào đa thức trên, ta có: \(8.\left(-1\right)^2+\left[-11.\left(-1\right)\right]+\left[-3.\left(-1\right)^4\right]=0\)
\(\Rightarrow8+11+\left(-3\right)=0\Rightarrow16=0\)(vô lí)
Vậy -1 không là nghiệm của đa thức P(x)
a) \(\left|-\frac{2}{11}+\frac{3}{22}x\right|-\frac{1}{2}=\frac{5}{7}\)
=> \(\left|-\frac{2}{11}+\frac{3}{22}x\right|=\frac{17}{14}\)
=> \(\orbr{\begin{cases}-\frac{2}{11}+\frac{3}{22}x=\frac{17}{14}\\-\frac{2}{11}+\frac{3}{22}x=-\frac{17}{14}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{215}{21}\\x=-\frac{53}{7}\end{cases}}\)
b) \(-\frac{7}{8}x-5\frac{3}{4}=3\)
=> \(-\frac{7}{8}x-\frac{23}{4}=3\)
=> \(-\frac{7}{8}x=3+\frac{23}{4}=\frac{35}{4}\)
=> \(x=\frac{35}{4}:\left(-\frac{7}{8}\right)=\frac{35}{4}\cdot\left(-\frac{8}{7}\right)=-10\)
c) \(2x+\left(-\frac{2}{7}\right)-7=-11\)
=> \(2x-\frac{2}{7}-7=-11\)
=> \(2x=-11+7+\frac{2}{7}=-\frac{26}{7}\)
=> \(x=\left(-\frac{26}{7}\right):2=-\frac{13}{7}\)
d) \(\frac{3}{7}+x:\frac{14}{15}=\frac{1}{2}\)
=> \(x:\frac{14}{15}=\frac{1}{2}-\frac{3}{7}=\frac{1}{14}\)
=> \(x=\frac{1}{14}\cdot\frac{14}{15}=\frac{1}{15}\)
1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)
\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)
2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)
tương tụ lm tiếp nhe buồn ngủ quá rồi !